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Abstract

Predicting query execution time is crucial for a number of tasks in database systems such as

query scheduling, progress monitoring and costing during query optimization. Query optimizers

uses two separate estimation models to find an optimal plan to execute a query a) selectivity

estimators to predict the number of input tuples for each operator node of a query plan tree

b) cost model to derive execution cost for a given plan. Significant errors occur in estimation

of execution time of a query as a result of errors in selectivity estimates as well as inaccuracies

in cost modeling [15].

In this work we are trying to minimize the error in the prediction of query execution time

which occurs because of inaccurate cost model in the current optimizer of PostgreSQL database.

We built a learning based cost model as opposed to traditional analytical models which are

predominant in the current optimizer. We chose learning technique over analytical methods

because it can capture operator interactions that happen within the query plan. A model-

ing technique was proposed previously [13] to learn query execution behavior at a fine-grained

operator level. Combining this with a different learning technique, we are able to produce signif-

icantly better estimates than state of art the technique for a set of (test set) benchmark queries.

We evaluate our approach using the TPC-H [4] and TPC-DS [6] workload on PostgreSQL 9.6

[1].
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Chapter 1

Introduction

Current PostgreSQL database query optimizer has predictors that rely on some system perfor-

mance constants and modelling power of the methods available in literature is not enough to

obtain them accurately. The PostgreSQL cost model is designed to compare the costs of alterna-

tive query plans by estimating the time taken to run a query plan. The time is measured in cost

units that are abstract, but conventionally mean disk page fetches [2]. While they do a good job

of comparing the costs of alternative plans, they are poor predictors of plan execution time. As

a result accurate prediction of execution time remains difficult to achieve for most of the queries.

Database systems can have many benefits from accurate estimation of physical execution time

under a given hardware and system configuration. It has a wide range of applications including:

• Admission control: Resource managers can use this metric to perform workload allocations

such that the specific Quality of Service (QoS) goals are met.

• Query Optimizer: Optimizer can choose best plan for a query based on estimated execution

time.

• Query Scheduling: Knowing the execution time is crucial in deadline and latency aware

scheduling.

• Progress monitoring: Knowing the execution time of an incoming query can help avoid rogue

queries that are submitted in error and take an unreasonably long time to execute.

1.1 Background

The problem of estimating execution time is well studied over the past decade. Figure 1.1

illustrates the classical architecture of a query optimizer. Given a query, the job of query

optimizer is to look at the various enumerations of query plan and pick the cheapest one.

Each query plan is assigned a cost based on the operators, choice of implementation and input

cardinalities and this cost is estimated by the cost model. Ideally we prefer the estimated cost
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to be close to the actual time taken to run the query, but in practice, this is rarely the case

primarily because of the errors from the following components.

Figure 1.1: Query Optimizer Architecture

• Cardinality estimators: It is well studied that predicate selectivity estimates used for

optimizing SQL queries are often significantly in error [9].

• Cost model: The job of the cost model is to look at the query plan with estimated cardi-

nalities and come up with an estimate of the execution time. Current query optimizers

predominantly use analytical cost formulas to compute cost based on the amount of data

flowing through the operators. Cost model needs tuning if they are to produce estimates

specific to a target hardware. However a tuned formula often cannot compensate for the

effects introduced by complex query optimizations (e.g., intra-query parallelism).

These reasons are studied in previous works and they have found the current optimizer

constants can’t be used directly for prediction of the query execution time. For example, in

[8], the authors found that using linear regression to map execution time to cost of Neoview’s

commercial query optimizer was not effective (Figure 17 of [8]). Once more similar results were

obtained in [7] which tried to map execution time to PostgreSQL optimizer cost estimates using

same technique (Figure 5 of [7]). The reason for this is there exists a non-linear relationship

between estimated cost using current optimizers and the actual running time of the query [10].

The error metric plays an important role to measure the accuracy of any work. The error

metric used by previous work (Relative Error) is bounded as well as biased towards under-

estimations. Therefore, we are using a different metric called Q-error introduced in [11] as

compared to all of the previous work for the calculation of the error in the prediction of query

execution time on a PostgreSQL database. Other details of this metric are discussed in the

Section 4.1 [9].
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1.2 Our Contribution

• We propose statistical techniques which learn query behavior at a finer granularity i.e.,

at physical implementation level of a query operator. This operator level learning was

first introduced in [7]. They are using linear regression for the model building but in

contrast we are using support vector regression (SVR) and Gradient Boosted regression

trees (GBRT) which are able to fit non-linear dependencies found in the training data. We

have shown these non-linear approaches out-performs the linear approach [17] in Section

4. We then compose these individual operator running time estimates to produce an

overall execution time estimation for a given query plan.

• Results on benchmark workloads suggests that the proposed technique outperforms the

state of the art.

1.3 Roadmap

The rest of the report is organized as follows: we start with the related work and applicability

of their solutions to the current problem in Chapter 2. An overview of proposed approach in

discussed in Chapter 3. We introduce operator level models and the feature selection process

in Sections 3.3 and 3.4 of Chapter 3, respectively. We then describe the training and testing

phases in Sections 3.5 and 3.6 of Chapter 3, respectively. We validate our approach and present

the experimental results in Chapter 4. Next, we discuss the shortcomings of our approach in

Section 4.3 of Chapter 4. We conclude the thesis by discussing future work in Chapter 5.
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Chapter 2

Related Work

Recent work has explored the use of machine-learning based techniques for the estimation of

both run-times as well as resource usage of SQL queries, both for queries in isolation [7, 10], as

well as in the context of interactions between concurrently executing queries [16].

The work done in [8] is the first of its kind to embed machine learning techniques inside query

optimizer. They are doing a Plan-level modeling in which each query plan has a feature vector

associated with it. This feature vector is used for training the model as well as for the estimation

of a new query. In their approach, two queries are said to be similar if their plan have same or

similar feature vector. Their approach has some limitations. As resource estimate for a query

Q is obtained by averaging the resource characteristics of the three queries in the training data

that are the most similar to Q, this technique is not capable of “extrapolating” beyond the

training data [10].

For static workloads, where the incoming queries are simply instances of an already known

query template this approach is suitable but it lacks the generalizing ability required for ad-hoc

queries.

The approach proposed in [7] mitigates the issue mentioned above to some extent by in-

troducing operator level models and using it along with the plan level models for predicting

execution time. The models offer the generalization properties to an extent but their ability is

limited by the choice of machine learning method they have used for operator level modeling

[10]. The authors use linear regression models for each operator; that means they implicitly

force the output to vary linearly with each input feature. However we have shown in our

experiment section the execution time of a query doesn’t vary linearly with the features.

The work of [10] explores the use boosted regression trees along with scaled functions. They

primarily focus on estimating the logical CPU and I/O consumption for a query. In contrast,

we focus on estimating the actual execution time (physical). Moreover, we are taking care of
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intra-query parallelism by choosing our feature set accordingly whereas their work does not

support it.

The approach proposed in [17] looks at tuning the internal cost parameters of PostgreSQL

engine. They do this by running a set of calibrated queries and computing the values of cost

parameters. Their approach can generalize to ad-hoc queries and produce estimates with some

accuracy making it the state of the art. However being analytical they lack the power to ac-

count for query interaction among operators (Compute & I/O) overlap. In contrast, we try

to account for these effects produced by those subtle optimizations by looking at patterns on

actual query executions on a target hardware.

As of now we have implemented the state of the art [17] approach. We have some experi-

mental evidence which shows our approach outperforms the approach proposed in [17].

5



Chapter 3

Proposed Approach

3.1 Assumptions

Before we go into the details of the approach, we list the constraints we impose to solve the

problem.

• We only consider predictions for standalone queries.

• Perfect selectivity estimates are assumed. This allows us to study the sole impact of cost

model on estimation errors.

• System configuration remains the same through-out the whole process.

• Number of children at any node in query tree are limited to 2. Most operators in the

engine are unary or binary. However there are tiny fraction of operators which can have

more than 2 children (e.g., Bit-OR, Bit-AND), here the number of children are unbounded.
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3.2 Overview

Figure 3.1: Overview of proposed approach

Our approach consists of two distinct phases: an off-line Training and an on-line Testing.

During training phase, we execute a set of queries on the target system and collect the values of

features for each operator. For each physical implementation of an operator, we build a model

to predict the response time (time taken to produce all the tuples) taken by that operator. We

recursively use information from child operators to produce an estimate for its parent operator.

Hence, the total execution time of a query will be response time of the root node in the query

plan tree. Since there are only handful of operators in the engine, this approach of learning

models for each operator is feasible in terms of both time and space complexity.

3.3 Operator Level Models

We are trying to predict the execution time of arbitrary queries not seen during training. For

this purpose, we use the fact that query plan is composed of a set of SQL operators within

database engine already. As we are building model for each operator and because this approach

mimics the way SQL queries are executed, this allows us to make predictions for any arbitrary

query by composing individual operator estimates. Training an operator involves extracting

individual running time of an operator from the total execution time. For this purpose we are
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using PostgreSQL explain analyze command, given a query, it gives the individual operator

response time for all the operators involved in the query. We use these actual response time to

build a learning model for predicting execution time for each operator.

3.4 Features

Feature selection process deals with issue of choosing most predictive feature set. For each

operator we have used different sets of features to create models according to their working

mechanisms. Feature selection is based on domain knowledge of database internals and work-

ing of individual operators. Some of them were also used by previous work [8] [7] [10].

In PostgreSQL 9.6 (current version) they have introduced a facility to execute some operators

in parallel i.e multiple processes will be allocated to a particular portion of a plan and every

background process which is successfully started for a given parallel query will execute its por-

tion of the plan. We are including the effect of this parallelism by introducing some additional

features in our model.

As previously mentioned we have used two learning techniques SVM and GBRT for modeling

the execution time of the operators. The model building process using GBRT facilitates us to

see the order of importance of features used for training the model for an operator. The relative

rank (i.e. depth) of a feature used as a decision node in a tree can be used to assess the relative

importance of that feature with respect to the predictability of the target variable. Features

used at the top of the tree contribute to the final prediction decision of a larger fraction of the

input samples. The expected fraction of the samples they contribute to can thus be used as

an estimate of the relative importance of the features. By averaging those expected activity

rates over several randomized trees one can reduce the variance of such an estimate and use it

for feature selection. In python implementation of those estimates are stored as an attribute

named feature importances on the fitted model. This is an array with shape (n features,)

whose values are positive and sum to 1.0 [5]. The higher the value, the more important is the

contribution of the matching feature to the prediction function.

Values for features are extracted from PostgreSQL 9.6 explain analyze command.
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Feature Description

Estimated Number of input tuples from child

Estimated Average width of input tuples from child

Estimated Average width of output tuples

Estimated sequential pages fetched

Estimated random pages fetched

Estimated tuples accessed via index

Estimated number of CPU operations to be performed

Estimated number of tuples transferred from

parallel worker process

Workers Launched

Table 3.1: List of features for Sequential Scan operator.

Table 3.1 contains the list of features used for the Sequential Scan operator. The feature

importance graph i.e. Figure 3.3, shows that sequential pages scanned and CPU operations

performed are the two most related features with the time needed to execute sequential scan

when it is executed sequentially, which is true as one would have expected theoretically. Increase

in sequential pages scanned will increase the time of sequential scan as well as increasing filter

constraints will result in more CPU operations which eventually increase the time needed to

perform sequential scan.

Here, the features “Number of input tuples from LC ” and “Estimated sequential pages scanned”

seems to be dependent. However because of the operator pipelining during query execution they

are not totally dependent. To understand this concept consider query plans given in Figure 3.2.
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Figure 3.2: Example Query Plans

In the part A, there is only a sequential scan on relation R. So for this plan the “sequential

pages scanned” feature contains the number of pages fetched that contains the R data. Whereas

in part B there is a hash operator above the same sequential scan operator. In this case both

the sequential scan operator and hash operator will execute together (operator pipelining) and

hash bucket will be generated for all different values of the join attribute. Sometimes working

memory allocated for the query execution gets full before generating complete hash table.

Then to make space for new hash bucket operating system removes the older one and when the

removed bucket is required it is fetched in the main memory. Because of this some addition

will be there in the “estimated sequential pages scanned” feature. In PostgreSQL, as both the

operators run simultaneously, the combined effect is reflected in both operators feature i.e the

value of “estimated sequential pages scanned” feature for both will be same and their response

time will also be almost same. So, for same number of input tuples the feature sequential

scanned pages will have different value. Hence, in our case these two features are not directly

dependent and we need to have both in our feature set.

When the sequential scan executed in parallel, number of process that are launched for its

execution, should be a factor on which its execution time depends. Our model captures this

fact and can be seen in Figure 3.4.

10



Figure 3.3: Feature importance for Sequential Scan operator when executed sequentially

Figure 3.4: Feature importance for Sequential Scan operator when executed in parallel
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Feature Description

Estimated Number of input tuples from child

Estimated Average width of input tuples from child

Estimated Number of output tuples

Estimated Average width of output tuples

Estimated random pages fetched

Estimated tuples accessed via index

Estimated number of CPU operations to be performed

Actual Loops

Table 3.2: List of features for Index Scan operator.

Table 3.2 shows the feature set used for index scan operator. As parallelism is not supported

by index scan operator in the current implementation of database it doesn’t have any feature

related to it.

Figure 3.5: Example Query plan tree

All above mentioned features have very transparent meaning except the Actual Loops.

In some query plans, it is possible for a subplan node to be executed more than once. For

example, consider a plan shown in Figure 3.5, joining two relation using nested loop join. It

uses sequential scan and index scan on the outer and inner relation respectively. So, the index

scan operator will be executed once per outer row (output of sequential scan operator) in the

plan. In such cases, the Actual Loops value in the output given by explain analyze command of

12



PostgreSQL reports the total number of executions of the inner node, and the execution time

and rows (Estimated number of output tuples) given are the average over number of iterations

(Actual Loops) of execution time and output rows respectively [3]. So, we multiply execution

time and row count of that operator by the Actual Loops to get the total time actually spent

in the node and the exact number of the output tuple from that node respectively.

The feature importance graph for index scan is shown in Figure 3.6.

Figure 3.6: Feature importance for Index Scan operator

.
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Feature Description

Estimated Number of input tuples from child

Estimated Average width of input tuples from child

Estimated Average width of output tuples

Estimated sequential pages fetched

Estimated random pages fetched

Estimated tuples accessed via index

Estimated number of CPU operations to be performed

Estimated number of tuples transferred from parallel

worker process

Workers Launched

Table 3.3: Features used for Aggregate and Hash operators.

Table 3.3 contains set of features used for Aggregate and Hash operators. Feature impor-

tance graph for them is shown in Figures 3.7 and 3.8 respectively, where we can see that the

most important feature for both the operators is estimated number of rows coming from child

operator which is very obvious because more the number of input tuples are there more time

is required by the operator to process them.

Figure 3.7: Feature importance for Aggregate operator
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Figure 3.8: Feature importance for Hash operator

Feature Description

Estimated Number of input tuples from child

Estimated Average width of input tuples from child

Estimated Average width of output tuples

Estimated sequential pages fetched

Estimated random pages fetched

Estimated tuples accessed via index

Estimated number of CPU operations to be performed

Sort key: how many attributes are there in

order by clause

Table 3.4: List of features for Sort operators.

Table 3.4 features are used for Sort operator and feature importance for sort operator

quicksort is shown in Figure 3.9, which shows sorting time is highly dependent on the number

of tuples coming from child operator to sort which is obviously true.
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Figure 3.9: Feature importance for Quick Sort operator.

Feature Description

Estimated number of input tuples from LC

Estimated Average width of input tuple from LC

Estimated number of input tuples from RC

Estimated Average width of input tuples from RC

Estimated Average width of output tuples

Estimated sequential pages fetched

Estimated random pages fetched

Estimated tuples accessed via index

Estimated number of CPU operations to be performed

Estimated number of tuples transferred from parallel

worker process

Workers Launched

Table 3.5: List of features for Join operators. LC and RC indicates left child and right child

operator respectively.

Table 3.5 features are used for all the join operators and feature importance for hash join

operator is shown in Figure 3.10 and it again shows that the most important feature for operator
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is the number of tuples coming from the child node. Here it shows that the hash join operator

is more dependent on the number of rows coming from left child rather then number of tuples

coming from right child because “Hash Join node” in PostgreSQL query plan has scan operator

as its left child and hash operator as its right child. The number of tuple coming out of the

scan operator will get probed into hash table to check whether it satisfies the joining condition

or not. Therefore, if the selectivity of the filter in the scan is high, hash join operator will take

more time to complete the join.

Figure 3.10: Feature importance for Hash Join operator.

The operator having features estimated number of tuples transferred from parallel worker

process and workers launched will be present in the features set of that operator only when the

operator is getting executed in parallel.

The features number of output tuples, sequential pages scanned, random pages scanned,

tuples accessed via index, number of CPU operations to be performed and number of tuples

transferred from parallel worker process is also used by current PostgreSQL database optimizer

for calculating cost (an abstract unit) of the query execution by multiplying each one with

the cost associated with the respective task and then adding them to get the final cost for

the query execution. As the cost with which they are getting multiplied are abstract constant

whose values are inaccurate, therefore, cost required for the query execution doesn’t represent

the time needed for its execution. As the values of these features were not directly available in
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the explain command of PostgreSQL, we have added a functionality in command, now it gives

the values for these features at the compile time of the query.

Having described about selection of these features, we now move on to explain how the

predictions for a query plan can be made. Query plan predictions are computed by composing

the individual operator predictions; specifically we traverse query tree in a post-order fashion

(left child, right child and root). The parent operators use the estimates produced by their

children as part of the features. This allows us to build predictions progressively. On the

downside this also means that prediction errors are propagated.

3.5 Training

In this phase, prediction models are derived by executing set of queries and observing their

true running times. More precisely, example instances of execution time are collected for each

operator present in query plan. By executing more number of queries, we can obtain more

example instances which can in turn lead to better predictions. The training queries need to

be chosen such that:

• The example instances need to be significantly “different”. By difference between training

examples we mean that the variance within each feature is large. This can be achieved

to an extent by executing queries under a combination of different scales and data distri-

bution.

• They cover all the operators. This is particularly important because it directly determines

what type of testing queries are allowed. We cannot have a query plan which contains

an operator that is not associated with prediction model. Usually, Query Optimizer is

sensitive enough to produce different plans with change in data distribution and size.

• Each operator has sufficient number of example instances. Some operators are sparse

in nature and they are not readily available in query plan. To handle this, we need to

add hand-tuned queries that contain a specific operator. Running these queries under

different tables, scales will mitigate the issue to some extent.

Once we have the example instances, we now need to find the prediction model that best

explains the given data. First we tried Linear regression model for the prediction but the

results we got was not good, this is because of their inability to model non-linear relations among

features and the execution time [10]. Therefore we tried working with Support Vector Regression

(SVR) using Radial Basis Function (RBF) as its kernel and Gradient Boosted Regression Trees
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(GBRT).

SVR need to be tuned properly to fit the underlying data [13]. There are two parameters

associated with it:

• C - This is a regularization constant that trades complexity for accuracy. Low values

usually produce very simple models that underfit, while large values tend to overfit the

data.

• γ - This is a kernel coefficient for RBF. Intuitively, the gamma parameter defines how far

the influence of a single training example reaches. If gamma is too large, the radius of

the area of influence of the support vectors only includes the support vector itself and no

amount of regularization with C will be able to prevent overfitting. When gamma is very

small, the model is too constrained and cannot capture the complexity or “shape” of the

data.

C, γ are continuous variables and finding ideal values require an exhaustive search. Trying

exponentially growing sequences of C and γ is a practical method to identify good parameters.

C = {2−3, 2−1, . . . , 215},
γ = {2−10, 2−8, . . . , 23}.

The above range for C and γ is what is usually recommended in literature for fitting complex

functions. Note that SVR also requires the individual features to be normalized which implies

that we need to have the same scaling functions for both training and testing. Hence, we also

write the corresponding scaling function to disk

The goal of GBRT is to combine the predictions of several base decision trees in order to

improve robustness over a single estimator. We chose to try GBRT after SVM for our case

because these models are able to arbitrarily break the domain of input features and does not

rely on a fixed functional form. Therefore, is able to fit very complex non-linear relationship

between features and target. We trained GBRT using 1k boosting stages for each model where

each decision tree can have at most 10 leaf nodes.

In this way, for every operator we learn a prediction model and materialize them to disk. .

The overall space consumption (including models and scaling functions) is around 36MB.

3.6 Testing

For a given query plan, we predict the execution time by traversing through its nodes in post-

order fashion. At each node, we invoke the earlier materialized model to get an estimate. The
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children data is then used by parents to produce their own estimate. The estimated execution

time of a given query plan is therefore estimated execution time of root node.
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Chapter 4

Experimental Evaluation

In this section we evaluate the accuracy and robustness of our technique along with the state

of the art [17]. To evaluate the robustness we have specifically taken test queries which are

different from that of training.

4.1 Setup

• Database management system: PostgreSQL 9.6 [1].

• Datasets and Workload: We have used TPC-H and TPC-DS benchmark [4] [6] queries for

training the predictive models. For TPC-H, we generated underlying data distribution by

a tool published at [12]; this generates data which follows Zipfian distribution and allows

us to control the degree of skewness by setting a value for Z (with 1 being uniform and

4 being highly skewed). In our experiments we have set Z to 2 which ensures that there

are significant differences between queries even among the same template. The TPC-DS

database also assumes skewed distribution of data.

We have used QGEN [4] tool to generate 590 queries; having mixture of queries from total

of 21 query templates of TPC-H on 5GB database. We have generated 90 queries from

templates of TPC-DS using DSQGEN [6] tool on 5GB database. For testing, we have

separately generated one query for each TPC-H template and 7 queries from TPC-DS

template and checked on 5GB database. The query templates used for generating TPC-

DS test queries are different from the templates used for generating training queries,

whereas in case of TPC-H, test queries have same template but queries are different from

the queries in training set.

• Hardware: All the training and testing queries were executed on a machine with 3.0 Ghz

Intel Core Extreme processor and 8 GB of RAM. Queries were executed sequentially by
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flushing operating system cache and database system buffers.

• Predictive models: We have used Python’s sckit-learn [? ] library for all the ML imple-

mentations.

• Error Metric: We have used the Q-Error (QE) [9, 11] as our error metric.

QE(a, b) = Max(
a

b
,
b

a
)

Similarly, we use Average Q-Error(AQE) to compare the efficiency for a set of queries.

This metric is useful when we would like to minimize the prediction error regardless of

their execution time. Other metrics like square error are useful when we want to minimize

the absolute difference between actual and predicted time. In previous work [17, 7, 10],

authors have used metric called Relative Error(RE). It is defined as:

RE(a, b) =
|a− b|
a

The problem with this metric is that it is biased towards under estimation i.e., we can

always underestimate the value of b (e.g., 0) and get a RE of 1.0. As such, in many cases

they can have deceptively low Mean RE even though the actual estimates have high error.

In contrast, Q-Error metric is unbounded and catches under estimations.

• Alternative techniques: We compare the accuracy and generalization ability of approach

proposed in [17]. As in their case, we will assume perfect selectivity estimates while

producing the results. For ease of reference, we refer their [17] approach as Tuning and

our approach as Learning.

4.2 Evaluation

4.2.1 Non-Linear Relation Between Execution time and Features

As we have claimed that the execution time of a query is not linearly dependent on the feature

set of an operator. In this section we are trying to analyze what kind of non-linear relationship

exists between execution time and the features of an operator. As we have seen in Section

3.4, the minimum number of feature in any operator is 8. As one can’t visualize 9 dimensional

regression curve and only few features was having impact on the execution time of the operator,

we are studying the impact of two most important features on the operator.
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We took instances of sequential scan operator (when executed sequentially) for this analysis.

According to our model the two most important feature in this case are “Estimated sequential

scanned pages” and “Estimated CPU operations”. We plotted a scatter graph between these

two features and the execution time of the operator. Figure 4.1 shows the plot where in Part

A the z-axis represents actual execution time taken from training data and in Part B z-axis

represents predicted execution time of the operator which is predicted using our model.

Figure 4.1: Scatter Plot between Estimated Sequential Scanned pages, Estimated CPU opera-

tions and the execution time for a Sequential Scan operator (when executed sequentially).

We observed in x-axis near 2×108 value a small interval is there in which value of sequen-

tial scanned pages feature is almost constant, So we took that interval to study the impact of

cpu operations on the sequential scan operator. When we plotted the values of cpu operations

for that interval against the execution time of sequential scan operator we got the regression

curve shown in the Figure 4.2. We are getting a step function because we are using a technique

which are nothing but combination of many small decision trees and we know regression using

decision trees generates a step like function.
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Figure 4.2: Non-linear relation between Estimated CPU operations and Execution time for a

Sequential Scan operator (when executed sequentially).

4.2.2 Training Data Size: 5GB Test Data Size : 5GB

In this experiment we have generated the test queries using QGEN and DSQGEN tools. We

made sure that the training and testing queries do not contain identical query (i.e., same

template and instance). First we have shown how linear regression performed for the prediction

of query execution time as compared to GBRT in Table 4.1. Sometimes it performed better

than GBRT but when it goes bad it can go worse upto many orders of magnitude.

Query QE(Linear) QE(GBRT)

1 1.5 (-) 2 (-)

4 1.9 (-) 1.2 (-)

5 1.8 (+) 1.1 (-)

7 20.2 (-) 1.3 (-)

8 9.2 (+) 1

9 3.7 (+) 1

10 1.1 (+) 1

17 4.2 (-) 1

19 3.4 (+) 1.1 (+)

Table 4.1: Per Query Q-Error(QE) for TPC-H (5-GB), (-): Underestimate (+): Overestimate.

We have shown the per-query error in Table 4.2 for TPC-H queries on 5-GB database and

in Table 4.3 for TPC-DS queries on 5-GB database. We can see in Figure 4.3 and 4.4 that

GBRT performs better as compared to other techniques here.
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Query QE(Tuning) QE(SVM) QE(GBRT)

1 16.3 (-) 1.8 (-) 2.0 (-)

4 16.5 (+) 2.6 (-) 1.2 (-)

6 15.6 (-) 1.1 (-) 1.1 (-)

7 17.7 (-) 1.4 (-) 1.3 (-)

8 9.8 (-) 1.1 (-) 1

10 9 (-) 1 1

11 2.6 (+) 1.4 (+) 1

12 11.3 (-) 1.4 (-) 1

13 25.1 (+) 1 1

18 9.7 (-) 1 1

19 2.3 (+) 1 1.1 (+)

Table 4.2: Per Query Q-Error(QE) for TPC-H (5-GB). (-): Underestimate (+): Overestimate

Figure 4.3: Comparison between Tuning and Learning for TPC-H (5-GB)
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Query QE(Tuning) QE(SVM) QE(GBRT)

1 9 (-) 2 (-) 1.6 (-)

2 1.2 (-) 4.3 (-) 3.7 (-)

3 12.3 (-) 1 2.7 (-)

5 7.7 (-) 2.4 (+) 2.6 (+)

6 8.9 (-) 2.3 (+) 3.2 (+)

7 2.3 (+) 2.1 (-) 1.9 (+)

10 9 (-) 3.1 (+) 1.3 (-)

Table 4.3: Per Query Q-Error(QE) for TPC-DS (5-GB). (-): Underestimate (+): Overestimate

Figure 4.4: Comparison between Tuning and Learning for TPC-DS (5-GB)

4.2.3 Training data size : 5GB and Test data size: 10GB

Next we ran same test queries using same models learned before but on a larger scale database

(10GB) and found that the error got increased and most of the predictions was underestimates.

As we are using instance from 5GB and testing on 10GB, the model learned is not able to scale

up properly with the increase in the data size. Error for each TPC-H query for this scenario is

shown in Table 4.4.
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Operator QE(Tuning) QE(SVM) QE(GBRT)

2 37.9 (+) 1 1.9 (-)

4 26.2 (-) 6.8 (-) 3.7 (-)

5 17 (-) 2.6 (-) 2.6 (-)

6 15.3 (-) 1.9 (-) 1.8 (-)

7 19.9 (-) 3.5 (-) 2.9 (-)

8 11.1 (-) 2.1 (-) 2.1 (-)

10 9.4 (-) 1.9 (-) 1.5 (-)

11 3.1 (+) 4.7 (+) 1.7 (-)

14 16.5 (-) 2 (-) 2.1 (-)

17 14.6 (-) 3 (-) 1.7 (-)

18 11.1 (-) 1.9 (-) 1.8 (-)

19 1.5 (-) 1.4 (-) 1.6 (-)

Table 4.4: Per Query Q-Error(QE) for TPC-H (Training using 5GB and Testing using 10 GB

database). (-): Underestimate (+): Overestimate

4.2.4 Results Summary

As we are doing operator level modeling, analyzing error generated at the operator level is very

important. Table 4.5 contains the individual operators errors which we got after training on

TPC-H 5GB database.
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Query QE(Min) QE(Avg) QE(Max)

Seq Scan (sequential) 1 1.2 2.1

Seq Scan (parallel) 1 1.6 4.2

Index Scan 1 2.3 1.8

Aggregate (Sorted) 1 1.2 2

Aggregate (Hashed) 1 1.4 2

Aggregate (Plain) 1 1.1 1.9

Hash 1 1.3 3

Hash Join 1 1.4 3.5

Sort - Merge 1 1.2 1.6

Sort - Quick 1 1.1 1.4

Nested Loop 1 2.7 4.2

Table 4.5: Per Operator Q-Error(QE) for TPC-H (Training using 5GB and Testing using 5 GB

database).

In Table 4.6, we show the summary statistics for dataset TPC-H (5-GB) and dataset TPC-

DS (5-GB). In Table 4.7, we show the summary statistics for dataset TPC-H (10-GB). The

average Q-error for 5GB is 1.3 and for 10GB is 2.1.

Tuning SVM GBRT

Average 10.3 1.6 1.3

Minimum 1.2 1 1

Maximum 25.6 4.3 3.7

Table 4.6: Learning and Tuning comparison w.r.t QE, (TPC-H and TPC-DS 5-GB)

Tuning SVM GBRT

Average 15.2 2.7 2.1

Minimum 1.3 1 1.3

Maximum 44.6 5.9 3.7

Table 4.7: Learning and Tuning comparison w.r.t QE, TPC-H (10-GB)

4.3 Limitation

Having discussed the approach, in this section we comment on limitations of our approach:
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• With the increase in database size the prediction error is also increasing. That is, our

model works well only when training and test queries are from same size database.
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Chapter 5

Conclusions and Future Work

In this work, we studied the effect of cost model on overall execution time estimation. By

modeling at the level of physical implementation of an operator, we have shown that predictions

for ad-hoc queries can be achieved upto an extent.

We believe this work opens up lot of opportunities to further improve the estimates. The feature

selection can be improved further to give better predictions. We can use all the different plans

possible for a single query for training, as they all will have some different operator used in

them. So with the use of single query we will be able to train more number of operator. We

can use the Picasso tool [14] for having all possible plans of a query.

We need a portability technique such that we can learn on smaller database and use it on larger

one.
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