
Synthetic Regeneration of Relational Data at Scale

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

Computer Science and Engineering

BY

Raghav Sood

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2017

Declaration of Originality

I, Raghav Sood, with SR No. 04-04-00-10-41-15-1-12209 hereby declare that the material

presented in the report titled

Synthetic Regeneration of Relational Data at Scale

represents original work carried out by me in the Deparment of Computer Science and

Automation at Indian Institute of Science during the years 2015-2017.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discusions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

c© Raghav Sood

June, 2017

All rights reserved

DEDICATED TO

My Nation

Acknowledgements

I would like to express my sincere gratitude to my project advisor, Prof. Jayant R. Haritsa

for giving me an opportunity to work on this project. I am thankful to him for his valuable

guidance and moral support. I feel lucky to be able to work under his supervision.

I also sincerely thank Mr. Anupam Sanghi, Huawei Technologies Bengaluru and Prof.

Srikanta Tirthapura, Iowa State University. Without their collaboration this work would not

have been possible.

I would also like to thank the Department of Computer Science and Automation for pro-

viding excellent study environment. The learning experience has been really wonderful here.

Finally I would like to thank all IISc staff, my family and friends for helping me at critical

junctures and making this project possible.

i

Abstract

To locally reproduce and analyze a client’s problem, database vendors often construct a syn-

thetic version of the client’s database and query workload at their development sites. Such a

regenerative approach becomes imperative in the world of Big Data systems, where transferring

and storing client data at vendor sites has impractical space and time overheads, apart from

the standard privacy and liability risks.

A rich body of literature exists on synthetic database regeneration, but suffers critical lim-

itations with regard to maintaining statistical fidelity to the client database and/or scaling

to large volumes. In this report, we present PhoneyMocker, a database generator that lever-

ages the declarative approach to data regeneration proposed in [1], and materially improves on

it by adding scale, dynamism and functionality. Specifically, PhoneyMocker incorporates an

optimized LP (linear programming) formulation that replaces the grid-partitioning approach

of [1] by a region-partitioning approach, in the process delivering an algorithm that reduces

the LP complexity by orders of magnitude. Secondly, PhoneyMocker introduces the potent

concept of dynamic regeneration by using a minuscule database summary that can on-the-fly

create databases of arbitrary size. Finally, PhoneyMocker extends the scope of the generation

framework to a richer set of database schemas, query workloads and data operators.

A detailed experimental evaluation based on the TPC-DS benchmark demonstrates that

PhoneyMocker can be successfully used to handle the requirements of contemporary database

deployments.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Workload Dependent Generation[4] . 2

1.2 The DataSynth Generator[1, 2] . 3

1.3 Limitations of DataSynth . 7

1.4 Proposed PM Generator . 8

1.5 Organization . 10

2 PM Architecture 11

2.1 Client Site . 11

2.2 Vendor Site . 12

3 LP Formulation 15

3.1 Mathematical Basis for Small Size LP . 15

3.1.1 Simple LP Formulation . 16

3.1.2 Reducing the Size of the LP . 16

3.2 Deriving the Optimal Partition . 18

4 Database Summary Generator 22

4.1 Constructing Solution for the View . 22

iii

CONTENTS

4.1.1 Sub-view Ordering . 23

4.1.2 Aligning . 24

4.1.3 Merging . 26

4.2 Making Views Consistent . 26

4.3 Constructing Relation Summary . 27

5 Tuple Generator 28

6 Experiments 29

6.1 Quality of Volumetric Similarity . 29

6.2 Scalability with Workload Complexity . 32

6.3 Scalability with Materialized Data Size . 34

6.4 Scalability to Big Data Volumes . 35

6.5 Dynamism in Data Generation . 35

7 Conclusions 37

Bibliography 38

iv

List of Figures

1.1 Example Database Scenario . 3

1.2 Cardinality Constraints . 4

1.3 Additional AQPs for Query Workload . 4

1.4 View-based Cardinality Constraints . 5

1.5 Grid-Partitioning in DataSynth . 6

1.6 Region-Partitioning of PM . 9

1.7 Example Database Summary . 9

2.1 PM Architecture . 11

2.2 Dependency Graph . 13

2.3 View Decomposition . 14

3.1 Simple LP formulation for constraint set C for a relation whose total

size must be equal to k. 16

3.2 Reduced LP formulation for constraint set C for a relation whose total

size must be equal to k. 17

4.1 Markov Network . 23

4.2 Align and Merge Example . 24

6.1 Quality of Volumetric Similarity . 31

6.2 Extra tuples for Referential Integrity . 32

6.3 Number of LP variables (WLc) . 33

v

List of Tables

6.1 LP Processing Time . 34

6.2 Data Materialization Time . 34

6.3 Data Access Rate . 36

vi

Chapter 1

Introduction

In industrial practice, a common requirement for database vendors is to be able to test

their database engines with representative data and workloads that accurately mimic the

data processing environments at client deployments. This need can arise either in the

analysis of problems currently being faced by clients, or in proactively assessing the per-

formance impacts of planned engine upgrades on client applications. While, in principle,

clients could transfer their original data and workloads to the vendor for the intended

evaluation purposes, this is often infeasible due to privacy and liability concerns. More-

over, with the advent of the so-called Big Data systems, transferring and storing the data

at the vendor’s site may prove to have impractical space and time overheads. Therefore,

vendors need the ability to regenerate a synthetic version of the client’s data processing

environment at their development sites.

To address the data regeneration problem, a particularly potent approach, called workload-

dependent database generation, was introduced in [4], and has served as the foundation

for most of the practicable systems proposed over the last decade, such as DataSynth

from Microsoft [5, 1, 2]. The basic principle of this approach is to generate synthetic data

whose behavior is volumetrically similar to the original database on the prespecified query

workload. That is, assuming a common choice of query execution plans at the client and

vendor sites (which can be ensured either through plan forcing or metadata matching),

the output row cardinalities of the individual operators in these plans are very similar in

the original and synthetic databases.

A common limitation among the prior work is that they all run into the issues of scale

and efficiency, at some stage or the other in the regeneration pipeline. So, for example,

in DataSynth, the focus is on materialized static solutions wherein a complete database is

created and then analyzed – this approach is not practical at large volumes, or when data

is processed in streaming format. Similarly, the ability to scale the generation process

1

to large query workloads and data volumes has not been clearly established, with the

validations being typically restricted to relatively simple and small benchmarks such as

TPC-H [9]. Finally, there are restrictions about the schema types and query workloads

that are amenable to this framework.

The above limitations become especially problematic from a futuristic Big Data perspec-

tive, where we have to cope with enormous data volumes and complex query workloads. To

materially address this challenge, we present in this report the PhoneyMocker1 (referred

as PM here onwards) data generation tool, which is based on the DataSynth approach,

but ensures that scale and efficiency aspects are addressed through the entire regeneration

pipeline. As a concrete example, the data processing environment of a 100GB TPC-DS

client database with 131 queries was regenerated in less than three minutes at the vendor

site using PM!

1.1 Workload Dependent Generation[4]

The goal of the workload dependent generation technique [4] is to generate synthetic data that

has the required output row cardinality for each operator in the query execution plan. For

instance, consider the following client database schema:

R (R pk, S fk, T fk)

S (S pk, A, B)

T (T pk, C)

where pk and fk refer to primary-key and foreign-key attributes, respectively. A sample client

query on this schema is shown in Figure 1.1a, with the corresponding query execution plan in

Figure 1.1b. Note that this execution plan has the output edge of each operator annotated with

the associated row cardinality (as evaluated during the client’s execution) – for instance, there

are 50000 rows resulting from the join of R and S. Such a plan is referred to as an “Annotated

Query Plan” (AQP) in [4]. The goal now is to generate synthetic data at the vendor site such

that when the above query is executed on this data, we obtain the identical, or very similar,

AQP.

1Mocking, symbolizes that the generated database volumetrically mocks/mimics the original database and
Phoney, symbolizes that the Tuple Generator (Section 5) superficially supplies gigabytes of data with not more
than a few kilobytes of data actually existing on disk.

2

select * from R, S, T

where R.S fk = S.S pk

and R.T fk = T.T pk

and S.A >= 20 and S.A < 60

and T.C >= 2 and T.C < 3

(a) Example Query

./

R.T fk = T.T pk

30K

σC∈[2,3)

900
./

R.S fk = S.S pk

50K

σA∈[20,60)

400
R

size = 80K

S

size = 700

T

size = 1500

(b) Annotated Query Plan (AQP)

Figure 1.1: Example Database Scenario

1.2 The DataSynth Generator[1, 2]

Here we give an overview of the related work DataSynth. Their approach leverages the

workload-aware generation approach to provide a unified mechanism for handling all data

characteristics via declaratively specified cardinality constraints (CCs). For instance, the CCs

expressing the AQP of Figure 1.1b are shown in Figure 1.2. The data generation technique

takes the schematic information and the set of CCs from the client site and produces synthetic

data that closely meet these CCs.

3

|R| = 80K

|S| = 700

|T | = 1500

|σS.A∈[20,60)(S)| = 400

|σT.C∈[2,3)(T)| = 900

|σS.A∈[20,60)(R ./ S)| = 50K

|σS.A∈[20,60)∧T.C∈[2,3)(R ./ S ./ T)| = 30K

Figure 1.2: Cardinality Constraints

We describe the generation algorithm of DataSynth with the help of the example discussed

in Figure 1.1, and the inclusion of two more queries in the workload, whose AQPs are shown

in Figure 1.3.

./

R.S fk = S.S pk

10K

σA<40∧B<10

200
R

size = 80K

S

size = 700

(a) AQP 2

./

R.S fk = S.S pk

20K

σA∈[20,60)∧B∈[5,15)

250
R

size = 80K

S

size = 700

(b) AQP 3

Figure 1.3: Additional AQPs for Query Workload

The generation algorithm starts by creating a view for every intermediate relation using the

schema information, resulting in the join expressions in CCs being replaced by single views.

More precisely, a view Vi is a set of non-key attributes that are present in either its corresponding

4

relation Ri, or in any other relation on which Ri depends through referential constraints (both

directly or transitively). For our running example, the views generated are:

R view (A, B, C)

S view (A, B)

T view (C)

All the CCs resulting from the query workload can be rewritten in terms of these views. As

a case in point, Figure 1.4 shows the CCs applicable on the R view.

|R view| = 80K

|σA∈[20,60)(R view)| = 50K

|σA∈[20,60)∧C∈[2,3)(R view)| = 30K

|σA<40∧B<10(R view)| = 10K

|σA∈[20,60)∧B∈[5,15)(R view)| = 20K

Figure 1.4: View-based Cardinality Constraints

Next, for each view, a linear program (LP) is formulated where the CCs are expressed as LP

constraints. This is augmented by a dimensionality reduction technique that helps to reduce

the complexity of the LP, wherein each view is decomposed into a set of sub-views based on

co-appearance of attributes in the CCs. For example, the R view is decomposed into two sub-

views: R1(A,B) and R2(A,C) since A and B co-appear in Queries 2 and 3, while A and C

co-appear in Query 1. This results in the original 3D attribute space (A,B,C) reducing into a

pair of 2D problems: (A,B) and (A,C).

Now, to formulate the LP for a view, DataSynth adopts a grid-partitioning approach where

each sub-view in the view is partitioned such that all its dimensions are split using the constants

appearing in the CCs – this partitioning is referred to as intervalization in [1]. For example,

the grid-partitioning of R1 and R2 is shown in Figure 1.5, where each colored box corresponds

to a different CC.

5

Figure 1.5: Grid-Partitioning in DataSynth

For each cell in the grid, a variable is created which represents the number of data rows

present in that cell. So, a total of 28 variables are created, 16 corresponding to the R1 sub-

view: x1, x2, ..., x16, and the remaining 12 for the R2 sub-view: y1, y2, ..., y12. The CCs shown

in Figure 1.4 for R view can now be expressed in terms of LP constraints as follows:

x9 + x10 + x13 + x14 = 10K

x6 + x7 + x10 + x11 = 20K

x5 + x6 + ...+ x12 = 50K

x1 + x2 + ...+ x16 = 80K

y5 + y8 = 30K

y4 + y5 + ...+ y9 = 50K

y1 + y2 + ...+ y12 = 80K

Sub-views R1 and R2 share A as the common dimension. To ensure same data distribution

along dimension A, following four consistency constraints are added corresponding to the four

splits on A:

x1 + x2 + x3 + x4 = y1 + y2 + y3

x5 + x6 + x7 + x8 = y4 + y5 + y6

x9 + x10 + x11 + x12 = y7 + y8 + y9

x13 + x14 + x15 + x16 = y10 + y11 + y12

6

Additionally, since a variable denotes the number of tuples in a cell, non-negativity con-

straints are also added for all the variables.

A LP solver is now used to obtain a feasible solution to the enumerated constraints. Since the

modeling was carried out at a sub-view level, we need to convert the LP solution to equivalents

in the original 3D space. For this, DataSynth takes recourse to a sampling algorithm – in the

running example, this algorithm will compute Prob(A,B) and Prob(C|B). Then, 80K tuples

(size of R view) will be generated by first sampling a point from the former distribution, and

then sampling a point from the latter conditioned on this outcome. Finally, there is a last

reconciliation step where a few additional rows are added to some of the views in order to

satisfy referential integrity constraints.

1.3 Limitations of DataSynth

Clearly, DataSynth features a variety of novel ideas and problem formulations that go a long

way in addressing the data regeneration challenge. However, as enumerated below, there still

exist serious drawbacks that adversely impact its ability to handle current database scenarios.

LP Complexity: In spite of the various optimizations to reduce the LP complexity, the num-

ber of variables may still be enormous due to the underlying grid-partitioning strategy.

This makes the solution process very slow for complex query workloads, and often even

infeasible to solve in reasonable time. For instance, with the TPC-DS benchmark, there

are cases, highlighted in our experiments, where the number of variables is in the billions,

and the LP solver itself crashes at this scale.

Data Scale Dependency: The sampling algorithm is repeatedly invoked to generate the ma-

terialized views, whose sizes are commensurate with the scale of the database. This leads

to impractical computational time and storage space overheads for enterprise data vol-

umes.

Inaccuracy in satisfying CCs: The sampling algorithm, due to its probabilistic core, intro-

duces errors into the generation process with respect to constraint satisfaction – this effect

is especially prominent for CCs with small output cardinalities.

Limited coverage: The acceptable CCs are restricted to simple range filters of the type

7

[low, high). Also, only schemas with a tree-structured dependency graph1 can be handled

in the framework.

1.4 Proposed PM Generator

The goal of the PM generator is to address the main limitations of DataSynth, and to create

a tool that can take a substantive step forward towards handling the requirements of contem-

porary database deployments, where scale and efficiency need to be present on an end-to-end

basis.

The key contributions of PM are the following:

Region-Partitioning: DataSynth’s grid-partitioning approach is replaced by a potent region-

partitioning strategy. A sample region-partitioning for the running example is shown in

Figure 1.6, where the numbers now refer to region identifiers. A variable is created for

each region, resulting in a total of 15 variables, 9 for R1 and 6 for R2, substantially less

than the 28 created by DataSynth in Figure 1.5. We describe the algorithm in detail in

Section 3 and prove that it is the optimal partioning strategy with regard to minimizing

the number of variables. Further, as shown in our experiments, the shift from grid-

based to region-based partitioning results in orders-of-magnitude reduction in the LP

complexity. Specifically, referring back to the billions-of-variables situations mentioned

above for DataSynth, the corresponding numbers are only a few thousand with PM and

the solutions are typically obtained in less than a minute.

1A graph where every relation is a node and two nodes are connected with a directed edge if the source
nodes holds a foreign-key to the target node.

8

Figure 1.6: Region-Partitioning of PM

Database Summary and Dynamic Generation: A novelty of our data generation algo-

rithm is that it delivers a database summary as the output, rather than the static data

itself. This summary depends only on the query workload and not on the database scale,

and is of negligible size. For instance, the database summary corresponding to the run-

ning example is shown in Figure 1.7, where entries of the type a - b in the primary key

columns, mean that the relation has b− a+ 1 tuples with values (a, a+ 1, a+ 2,...,b) for

that column, keeping the other columns unchanged.

Figure 1.7: Example Database Summary

The advantages of a summary-based approach are that in conjunction with the tuple

9

generator component (Section 5), the database can either be dynamically generated in

streaming fashion, as might be expected in Big Data applications, or optionally materi-

alized into static relations.

Deterministic View Generation: DataSynth’s sampling-based approach to data generation

is replaced by a deterministic alignment strategy. The alignment works at the level of

database summaries, and is therefore extremely efficient. Further, it does not suffer the

probabilistic errors that affect the sampling approach, and therefore delivers more accurate

volumetric similarity.

Enhanced Coverage and Evaluation: In PM we have increased the scope of the query

workload to include schema that have DAG-structured dependency graphs. Further, fil-

ter predicates in disjunctive normal form (DNF) are accepted as opposed to only simple

range queries.

With regard to empirical analysis, DataSynth had been evaluated on a restricted set of 8

query templates from a 1 GB TPC-H benchmark in [1]. Whereas our experiments here

feature as many as 131 queries from the much richer and complex TPC-DS benchmark,

operated at 100 GB scale.

Integration with CODD [8, 3]: CODD is a graphical tool through which database environ-

ments with desired meta-data characteristics can be efficiently simulated without persis-

tently generating and/or storing their contents. The CODD tool supports the transfer of

meta-data from the client to the vendor site, and can therefore be used to ensure that

the optimizer’s plan choices at the client site are replicated at the vendor site. We have

integrated PM with CODD, thereby providing an end-to-end system that fully replicates

the client data processing environment at the vendor’s site.

1.5 Organization

The remainder of this report is organized as follows: In Section 2, the complete architecture of

the PM generator is presented and its components enumerated. The theoretical characterization

of our region-based LP formulation is presented in Section 3. The database summary generator

and the tuple generator are discussed in Sections 4 and 5, respectively. The experimental

framework and performance results are reported in Section 6. Our conclusions are summarized

in Section 7.

10

Chapter 2

PM Architecture

This section gives an overview of PM’s architecture, with a brief description of its various

components and their interactions with the database engine. The entire flow from the

client site to the vendor site is shown in Figure 2.1. In this picture, the components

coloured in green indicate the new components designed for PM, whereas the orange-

colored modules are borrowed from DataSynth and the yellow-colored modules indicate

the integration with CODD.

Figure 2.1: PM Architecture

2.1 Client Site

At the client site, PM fetches the schema information and the query workload with the corre-

sponding AQPs from the engine. The metadata is also fetched with the help of CODD[3]. The

11

AQPs are converted to the set of CCs using a Parser. All this information (schema, metadata,

queries and CCs) is passed to the anonymizer for masking.

In Figure 2.1 we can see that each of the queries q1, q2, q3, ..., qn are fired on the engine with

data D and we get p1, p2, p3, ..., pn AQPs respectively. The schema information and metadata

are represented as S and M respectively. The Parser takes AQPs as the input and returns CCs

as the output. The anonymizer masks all the information and the resultant schema information

(shown as S), metadata (shown as M), the set of queries (shown as q1, q2, q3, ..., qn) and masked

cardinality constraints (shown as CCs) are generated and shipped to the vendor’s site.

2.2 Vendor Site

The vendor site contains four major modules:

Preprocessor: Here, the schema information and CCs are processed to create the input for

the LP Formulator. This component has been borrowed from DataSynth. We briefly

explain it here for the sake of completeness. The readers can refer to [1] for more details.

The Preprocessor comprises of two sub modules:

• View Construction[1]. This component takes the database schema as input and

creates a view Vi corresponding to every relation Ri. As discussed earlier, creation

of views help us to replace the join expressions in the CCs, i.e., once the views are

created, each constraint can be re-written as a filter predicate over a single view only.

A view Vi can be considered as a set of non-key attributes that are present in either

Ri or in any other relation on which Ri depends through referential constraints (both

directly or transitively). Dependencies between relations can be computed using the

dependency graph. In a dependency graph, a node for every relation is created. A

directed edge from a node Ri to Rj is added, if Ri contains a foreign-key referencing

Rj. Now, a relation Ri is said to be dependent on relation Rj if there exists a path

from Ri to Rj in the dependency graph.

For example, consider a schema having four relations with the dependency graph

as shown in Figure 2.2. A view is created corresponding to every relation. Here,

Catalog sales view will have non-key attributes of all the relations. Customer view

will have non key attributes of Customer and Customer address relations. The

remaining two views will have the non-key attributes of the corresponding relations.

12

Figure 2.2: Dependency Graph

• View Decomposition[1]. In general, the number of attributes in a view are many.

These lead to a high-dimensional (every attribute is considered a dimension) space

problem to be solved. Therefore, the goal of this component is to divide a high-

dimensional problem into several low-dimension problems by splitting the view into

sub-views. In order to do that, first a Markov network is created. This is an undi-

rected graph where a node for each attribute in the view is created. An edge between

two nodes are added if the corresponding attributes co-appear in some CC. In order

to decompose the view, we need to modify the graph such that it becomes chordal1

(if not already). To do this, we have implemented the algorithm presented in [7].

Finally, maximal cliques are extracted from this graph. Each maximal clique is a

sub-view.

For example, let there be a view whose Markov network for a set of constraints is as

shown in Figure 2.3a. This network is not chordal, therefore we add an edge to make

it chordal. Resultant graph is as shown in Figure 2.3b. Finally, maximal cliques are

extracted from this. We therefore obtain two sub-views as shown in Figure 2.3c.

1A graph is chordal if each cycle of length 4 or more has a chord; a chord is an edge joining two non-adjacent
nodes of a cycle.

13

Figure 2.3: View Decomposition

LP Formulator and Solver: For each view that we obtain from the Preprocessor, the LP

Formulator constructs a LP by taking as input the corresponding set of sub-views and

applicable CCs. The formulation algorithm is explained in detail in Section 3.

Once this is done, the LP is passed on to the Solver. We have used Z3[6], a contemporary

SMT solver developed by Microsoft to solve the LP. The solver takes the LP constraints

as the input and gives one of the feasible solutions as the output.

Summary Generator: This component takes the LP solution for each view as the input, and

generates the database summary from it. This component is also responsible for ensuring

that the generated summary obeys referential integrity. We explain this component in

detail in Section 4.

Tuple Generator: Tuple Generator resides inside the database engine. It ensures that when-

ever a query is fired, the executor does not fetch the data from the disk, rather the Tuple

Generator supplies the data on-the-fly using the database summaries generated earlier.

The details of this component are given in Section 5.

Note that we use CODD[3] to load the masked metadata (M) on to the vendor’s engine to ensure

that when the masked queries are fired, the optimizer chooses the plans which are structurally

the same as the ones that were present on the client’s site.

14

Chapter 3

LP Formulation

The preprocessing step before LP formulation, which consists of constructing views and

decomposing them into sub-views, has been borrowed from DataSynth. During view

decomposition, a view is divided into sub-views using view graphs. A view graph is

constructed by creating a node for each attribute and an edge between two attributes

is added if the corresponding attributes co-appear in some CC. The sub-views are the

maximal cliques extracted from this graph after making it chordal.

The LP formulation module treats each view as a set of its sub-views. It takes the CCs

applicable on each of the sub-views and generates solution for each sub-view which is

merged to give a view solution in the next step. Here CCs are written as LP constraints.

Since the sub-views can be overlapping, additional LP constraints are added to keep the

sub-views consistent with each other. We start by presenting the mathematical basis for

our LP formulation, followed by a description of the algorithm for generating an LP of a

small size.

3.1 Mathematical Basis for Small Size LP

Let n denote the number of attributes in the given relation. For 1 ≤ i ≤ n, let Di denote the

domain of the ith attribute. For simplicity, we assume that attribute i is numeric, so that Di

is a subset of real numbers. 1 Let D denote the universe D1 ×D2 × · · ·Dn.

We are given a set of m cardinality constraints that the relation satisfies. For 1 ≤ j ≤ m,

each constraint Cj is a pair 〈σj, kj〉 where σj is a selection predicate, kj is a non-negative integer,

and which means that the number of tuples satisfying predicate σj is equal to kj. We assume

that each predicate σj is in disjunctive normal form (DNF).

1Our technique based on equivalence classes applies to more general attribute types.

15

3.1.1 Simple LP Formulation

Let us first consider a simple way of formulating an LP that satisfies all CCs. For each tuple

t ∈ D, we have a variable xt that denotes the number of copies of this tuple in the relation.

The LP shown in Figure 3.1 ensures that the resulting relation satisfies all CCs, including a

constraint on the total size of the relation R. The problem with this formulation is that the

number of variables in the resulting LP is as large as the size of the universe D. Hence, it is

infeasible to work directly with this formulation.

For each t ∈ D, xt ≥ 0[∑
t∈D

xt

]
= k

For each j, 1 ≤ j ≤ m,

 ∑
t:σj(t)=true

xt

 = kj

Figure 3.1: Simple LP formulation for constraint set C for a relation whose total
size must be equal to k.

3.1.2 Reducing the Size of the LP

We now present an LP with fewer variables. We first note that in the simple formulation,

the variables corresponding to two points t1, t2 ∈ D that behave identically with respect to a

constraint Cj (i.e. σj(t1) = σj(t2)) can be combined together as (xt1 + xt2), for the purposes

of satisfying constraint Cj. If this is true with respect to every constraint, i.e. for j = 1 . . .m,

σj(t1) = σj(t2), then there is no need to treat t1 and t2 separately, i.e. the two variables xt1 and

xt2 can be merged into a single variable (xt1 + xt2) in every equation, leading to fewer variables

in the LP. By repeating this variable merging process recursively until it is no further possible,

we arrive at a vastly reduced LP. To formalize this idea, we start with the following definitions.

For constraint C and point t ∈ D, let C(t) be an indicator variable:

C(t) =

{
true if t satisfies C

false otherwise

Definition 3.1 For two points p, q ∈ D and a set of constraints C, we say pRCq if for each

C ∈ C, C(p) = C(q).

16

Lemma 3.1 For set of constraints C, relation RC is an equivalence relation on D.

Proof: 1 We first note that the relation is reflexive, since for each p ∈ D, pRCp. Similarly, it

can be easily seen that the relation is symmetric. For transitivity, suppose that for p, q, r ∈ D,

pRCq and qRCr. Note that for each C ∈ C, it must be true that C(p) = C(q) and C(q) = C(r).

It must be true that C(p) = C(r), showing that the relation is transitive.

Definition 3.2 Given a set of constraints C, a partition1 P of D is said to be a valid partition

if for each block b ∈ P and any two points p, q ∈ b, it must be true that pRCq.

Once we obtain a valid partition P of D subject to C, the LP can be formulated as shown

in Figure 3.2. Instead of a variable for each point t ∈ D, there is now a single variable xb for

each block b ∈ P, representing the number of tuples lying in this block.

For each b ∈ P, xb ≥ 0[∑
b∈P

xb

]
= k

For each j, 1 ≤ j ≤ m,

 ∑
b:σj(b)=true

xb

 = kj

Figure 3.2: Reduced LP formulation for constraint set C for a relation whose total
size must be equal to k.

Note that the total number of variables in the reduced LP shown in Figure 3.2 is equal to

the number of blocks in the partition P and is much smaller than the number of variables in

the original LP, shown in Figure 3.1. Since the complexity of solving an LP increases with

the number of variables in it, we desire an LP with as few variables as possible, and hence we

desire a valid partition of D with as few blocks as possible. We say that a valid partition P
with respect to C is an optimal partition, if it has the smallest number of blocks from among

all valid partitions of D with respect to C.

Lemma 3.2 The quotient set 2 of D by RC is the unique optimal partition of D with respect

to constraint set C.
1A partition of a set D is a set of subsets of D such that every element x ∈ D is in exactly one of these

subsets.
2The set of equivalence classes of a set D with respect to an equivalence relation Q is called the quotient of

D by Q.

17

Proof: 2 Let P1 denote the quotient set of D by RC. Clearly P1 is a valid partition from

the definition of equivalence class. Further, let P2 (6= P1) denote a valid partition such that

|P2| ≤ |P1|. This implies that there exist two points p, q ∈ D such that p and q are in different

blocks in P1 but in same block in P2. Now, if p and q belong to different blocks in P1, then

they are not related (by definition of equivalence class). But, in P2 they are present in the same

block, which implies P2 cannot be a valid partition. Hence, P1 is the smallest valid partition or

in other words, it is the optimal partition.

3.2 Deriving the Optimal Partition

We now present an algorithm to derive the optimal partition of D with respect to C. Each

constraint C ∈ C is in DNF, and is expressed as the union of many smaller “sub-constraints”.

Each sub-constraint is the conjunction of many per-attribute constraints, and each per-attribute

constraint is a constraint on the values that a single attribute could take. For example, the

following constraint on two attributes A1, A2: ((A1 ≤ 20) ∧ (A2 > 30)) ∨ (A1 > 50), is divided

into two sub-constraints: (A1 ≤ 20) ∧ (A2 > 30) and (A1 > 50).

Definition 3.3 For a sub-constraint C and dimension i, let Ci denote the restriction (pro-

jection) of C to dimension i. Further, let Ci
1 =

∧
k=1...iC

k denote the restriction of C to

dimensions 1, 2, . . . , i. For instance, if C = (A1 ≥ 1∧A1 ≤ 2∧A2 ≥ 4∧A2 ≤ 5∧A3 > 6) then

C2 = (A2 ≥ 4 ∧ A2 ≤ 5), and C2
1 = A1 ≥ 1 ∧ A1 ≤ 2 ∧ A2 ≥ 4 ∧ A2 ≤ 5.

Our algorithm proceeds iteratively, one dimension at a time. Before processing dimension

i, it has a partition of D that is optimal subject to constraints along dimensions 1 till i − 1.

In processing dimension i, it refines the current partition as follows. For each block b in the

current partition, it appropriately divides the block along dimension i if there is a constraint

C ∈ C such that there are some points in b that satisfy constraint Ci, and some that do not.

Definition 3.4 A constraint C is said to split a block b ⊂ D if there exist two points p1, p2 ∈ b
such that C(p1) = true and C(p2) = false. If C splits b, then refining b by C partitions b into

two subsets b+(C) = {x ∈ b|C(x) = true} and b−(C) = {x ∈ b|C(x) = false}.

18

Algorithm 1: Optimal Partition(D,C)

Input: Universe D, set of sub-constraints C
Output: An optimal partition P of D subject to set of sub-constraints C

1 P0 = {D} // A partition with one set, D.

2 for i from 1 to n do

3 M ← Pi−1;

4 foreach C ∈ C do

5 M ′ ← ∅;
6 foreach block b ∈M do

7 if Ci splits b then

8 Let b+ and b− result from refining b with Ci ;

9 Add b+ and b− to M ′;

10 else

11 Add b to M ′;

12 M ←M ′;

13 Pi ←M ;

14 return Pn;

Lemma 3.3 Algorithm Optimal Partition(D,C) returns the optimal partition of D with respect

to set of sub-constraints C.

Proof: 3 For 1 ≤ i ≤ n, let Ci
1 = {Ci

1|C ∈ C}. We show by induction on i that after the ith

iteration of the outermost for loop in the algorithm, Pi contains an optimal partition of D with

respect to Ci
1. Since Cn

1 = C, it follows that after n iterations, Pn contains an optimal partition

of D with respect to C. We consider i = 0 as the base case. We can view the set C0
1 as a set of

“always true” constraints, and hence P0, which consists of only one element, D, is the smallest

partition that satisfies C0
1.

For each constraint C ∈ C, Ci
1 = Ci−1

1 ∧ Ci, hence Ci
1 is either identical to Ci−1

1 or is more

restrictive. It follows that an optimal partition of D with respect to Ci
1 must be a refinement

of an optimal partition of D with respect to Ci−1
1

1

For the inductive step, suppose that for i > 0, Pi−1 is the optimal partition of D with

respect to Ci−1
1 . We consider two cases. In the first case, consider a block b ∈ Pi−1 such that

b was not split by Ci, for any C ∈ C. Then it can be seen that b must be an element of the

1We say that a partition P1 refines another partition P2 if for each block b1 ∈ P1, there is a block b2 ∈ P2

such that b1 ⊆ b2.

19

optimal partition of D with respect to Ci
1. Note that in the algorithm, such a block b is added

in its entirety to M ′ for each constraint, and finally b will be preserved in M and in Pi. In the

second case, consider a block b which is split by a set of constraints {Ci|C ∈ B}, where here

B ⊂ C. Consider the constraints in B in some order. In processing the first constraint C ∈ B,

Ci will cause b to be partitioned into a set of smaller blocks, and these will further partitioned

(recursively) by later constraints. Suppose that B(b) denotes the set of blocks obtained thus

starting from b. We note the following: (1) For any two distinct blocks b1, b2 ∈ B(b) and points

p1 ∈ b1 and p2 ∈ b2, it must be true that p1 is not related to p2 by relation RCi
1 – blocks b1 and b2

must have resulted from splitting along some constraint in B. (2) For any block b′ ∈ B(b) and

any two points p, q ∈ b′, it must be true that pRCi
1q. Suppose this was not the case, then the

block b′ would have been split by some constraint along dimension i. This proves the inductive

step, that Pi is the optimal partition of D with respect to set of sub-constraints Ci
1.

From Sub-Constraints to DNF Constraints So far, we have assumed a set of sub-

constraints, i.e. each is a conjunction of many per-attribute constraints. Next, we show how to

extend this to a set of constraints in DNF. Given a set C of constraints in DNF, we generate the

set of sub-constraints resulting from the constraints in C to form a new set of sub-constraints

C′. We then construct the optimal partition P′ of D subject to C′ using Algorithm Optimal

Partition. Note that each sub-constraint C ′ ∈ C′ is stricter than the constraint in C that it was

derived from. Hence it follows that P′ is a valid partition of D subject to C, but not necessarily

an optimal partition. The optimal partition subject to C is derived as follows.

1. For each block b ∈ P′, assign a label `(b) equal to the set of all constraints in C that a

point in block b satisfies. Note that this can be computed using a single pass through

each constraint in C, and evaluating the constraint over an arbitrary point p ∈ b.

2. Let `(C ′) denote the set of all distinct labels {`(b)|b ∈ P′}. For each l ∈ `(C ′), merge all

blocks in P′ whose label equals l into a single block. Return the resulting partition P of

D.

We claim that P is an optimal partition of D subject to C. To see this, note that no two blocks

in P can be merged together to keep the partition valid with respect to C – since two distinct

blocks in P have different labels, it follows that there is at least one constraint C ∈ C such

that one of the two blocks satisfies the constraint while the other does not. To see that P is a

valid partition with respect to C, note that for any block b ∈ P and two points p, q ∈ b, p and

q satisfy an identical set of constraints within C, and hence pRCq.

20

Consistency Constraints Like in [1], we need to put additional consistency constraints.

Since we applied CCs on sub-views rather than views, it is possible that for two sub-views

whose attribute sets are not disjoint, the data distributions for the common attribute(s) may

be different. To ensure same distributions for common attribute(s) across sub-views, we may

need to further refine the partition generated from the above procedure, and add additional LP

constraints.

We explain this by the following example. Consider a pair of sub-views V1 and V2 with

attributes A1 and A2 respectively, such that A1 ∩ A2 6= ∅. Further, let D1 =
∏

i∈A1
Di, D

2 =∏
j∈A2

Dj and D1,2 =
∏

k∈A1∩A2
Dk. Processing CCs on V1 and V2 leads to LP constraints on

D1 and D2 respectively, and suppose the respective partitions obtained are P1 and P2. In order

to keep the two sub-views consistent, we first have to ensure that the region boundaries for

the partitions of V1 and V2 in D1,2 are consistent with each other. In order to achieve this, we

need to refine P1 and P2 so that they have common boundaries along dimensions A1 ∩A2. We

consider the union of the “split points” of P1 and P2 along dimensions A1∩A2, i.e., values along

which the universe is split along these dimensions by the partitions. For each block in P1 (or in

P2), we refine this block until it no longer crosses such a split point. Then we add constraints

so that the sizes of sub-views V1 and V2 along the different regions of D1,2 that result from the

split points are equal to each other.

For the example we considered in Figure 1.6, the LP constraints can be written as:

x4 + x5 + x8 = 10K

x3 + x5 + x6 = 20K

x2 + x3 + ...+ x7 = 50K

x1 + x2 + ...+ x9 = 80K

y3 + y5 = 30K

y2 + y3 + y4 + y5 = 50K

y1 + y2 + ...+ y6 = 80K

And the four consistency constraints are also be written in the same way as we wrote earlier.

x1 = y1

x2 + x3 = y2 + y3

x4 + x5 + x6 + x7 = y4 + y5

x8 + x9 = y6

21

Chapter 4

Database Summary Generator

This component takes the LP solution for each view as the input, and generates the

database summary from it. The LP solution gives us the row cardinalities for all the

regions in the partitions at a sub-view level. Let bji represent the ith region of the jth

sub-view, and let the value of the associated variable be kji . So the LP solution is a vector

of the form 〈bji , k
j
i 〉, ∀i, j.

Recall that a sub-view is a projection of the view along some dimensions. Therefore,

in order to generate the view, we need to map the sub-view solution obtained from the

solver back to the original space. Accordingly, the summary generator component in PM

is responsible for the following three tasks:

1. Constructing a solution for complete views

2. Making views consistent with respect to each other

3. Extracting relation summaries from view summaries

4.1 Constructing Solution for the View

As discussed previously, in DataSynth this component was implemented using a sampling al-

gorithm. In marked contrast, PM deterministically generates the view solution – this approach

permits us to operate purely in the summary space, and results in elimination of the time and

space overheads incurred by DataSynth.

In order to merge the sub-view solutions to obtain the collective solution for the complete

view, we first order the sub-views according to an ordering algorithm, and then iteratively

build the view-solution by aligning and merging the next sub-view solution in the order. Let S
denote the list of all sub-view solutions, and viewSol be the final view solution that we wish

22

to compute. Algorithm 2 describes the process for constructing viewSol from S.

Algorithm 2: View Solution Construction

1 S← OrderSubViews(S)

2 viewSol← ∅
3 for s in S do

4 viewSol, s← Align(viewSol, s)

5 viewSol←Merge(viewSol, s)

We now describe in turn the ordering, aligning and merging algorithms.

4.1.1 Sub-view Ordering

Ordering is implemented through a greedy iterative algorithm where we can start with any

sub-view. Subsequently, at iteration i, let the set of visited sub-views until now be S. A sub-

view s from outside this set can be chosen only if s satisfies the condition that on removing

the common vertices between s and S in the view graph, there exists no path between the

remaining vertices of s and the remaining vertices of S.

For example, consider the markov network for a view be as shown in Figure 4.1. As we can

see, this has three cliques: AEC, ECD and BED. Here, if we start with sub-view AEC, then we

are bound to choose ECD before BED because on removing the common attribute E between

BED and AEC, there still exists the edge DC connecting the two remaining components. Note

that, ECD satisifies the required condition. Once ECD is chosen, then BED can be picked next.

Figure 4.1: Markov Network

23

(a) Sub-view Solution

(b) View Alignment

(c) Merged View Solution

Figure 4.2: Align and Merge Example

4.1.2 Aligning

After obtaining the merge order, in every iteration we merge the next sub-view solution (say s)

in the sequence to the current viewSol, after a process of alignment. The alignment algorithm

is a two step exercise. We show the two steps for the running example of Figure 1.6. This

example had two sub-views. We show how to align these:

1. First, we order viewSol and s on the common set of attributes. For instance, let the

24

solution to the LP for the example be:

x1 = 30K x2 = 20K x3 = 10K

x5 = 10K x7 = 10K

y1 = 30K y3 = 30K y4 = 20K

with all other variables being zero. This solution can be represented as shown in Fig-

ure 4.2a, where both the sub-view solutions are ordered on the common attribute A and

NumTuples represent the row cardinalities.

2. Our addition of consistency constraints during LP formulation ensures that the distribu-

tion of tuples along the common set of attributes is the same in the various sub-views.

Therefore it is easy to see that the sum of NumTuples values in any interval of the com-

mon attribute is the same for the solutions under alignment. For example, in Figure 4.2a,

the total number of tuples with A = [40, 60) is 30K in both solutions. Likewise, other

values in A also have matching total number of tuples across the solutions.

The align step splits the rows in these solutions such that the corresponding rows in both

solutions have the same number of tuples. Let viewSoli and sj represent the ith and jth

rows in viewSol and s, respectively. Further, let ki and lj represent the NumTuples

values in viewSoli and sj, respectively. Given this, the Align algorithm is as shown in

Algorithm 3.

Algorithm 3: Alignment Procedure

1 i← 0, j ← 0

2 while viewSoli exists do

3 if ki < lj: split(s, j, ki)

4 else if ki > lj: split(viewSol, i,

lj)

5 i← i+ 1, j ← j + 1

The split procedure takes a LP solution as input along with a row number and an integer.

Say the input solution is X, the row number is r and the integer is card. Let the

NumTuples attribute value in rth row of X be n. This procedure returns the solution

X after splitting its rth row (Xr, n) into Xr : (Xr, card) and Xr+1 : (Xr, n− card).

25

The sub-view solutions of Figure 4.2a are shown in Figure 4.2b after undergoing the

alignment process. We can see here that both solutions have identical NumTuples in

the corresponding rows.

4.1.3 Merging

This is the last step where we simply merge the two solutions obtained after alignment through

a join of the two solutions on the common attributes. For example, the aligned solutions of

Figure 4.2b are merge-joined to deliver the final view solution of Figure 4.2c.

4.2 Making Views Consistent

Using the above procedure, we can obtain all the view solutions. However, since each solution

was obtained independently, there could be inconsistencies across the solutions. For example,

in Figure 1.1, since R view consists of attributes borrowed from S view and T view, it should

not feature any values that are not present in the corresponding attributes of these latter views.

Since the dependencies between views can be direct and transitive, we need to follow an

ordering in which the views are made consistent. For this purpose, we carry out a topological

sort on the dependency graph and iteratively make the current view consistent with its prede-

cessors. Since a topological sort is employed, we can handle dependency graphs that are DAGs

unlike DataSynth which was restricted to tree traversals.

To make a pair of views Vi and Vj consistent with each other, where Vi is dependent on Vj,

we iterate over the rows in the view solution of Vi and look for the value combination that each

row has for the attributes that Vi borrowed from Vj. If that value combination is not present in

the view solution of Vj, we add a new row in its solution with the corresponding NumTuples

attribute set to 1. This therefore leads to an additive error in the total number of tuples in the

view as compared to the original AQP in the client. But we hasten to add that the error is a

fixed number of rows, determined by the nature of the constraints and the LP solution, and

not by the data scale. Therefore, at Big Data volumes, the relative error can be expected to

be miniscule.

The view integration component is present in DataSynth as well, but since the view solu-

tions comprised of complete database instantiations, and not summaries, the time and space

overheads incurred for making the views consistent were comparatively huge.

26

4.3 Constructing Relation Summary

Once we have a consistent solution across all view summaries, we next need to obtain the

corresponding relation summaries. For this, we create a summarized relation schema R̃i for

each relation Ri. This schema consists of all attributes in Ri except the primary key attribute,

and additionally, the NumTuples value for each entry in R̃i, as sourced from the view solutions.

For the attributes that are common between the summarized relation set and the corre-

sponding view solution set, the value combinations and corresponding cardinalities are directly

borrowed. What remains are the foreign key attributes. For filling a foreign key attribute fk,

we first need to see the view corresponding to the relation that the foreign key refers to. Say

the view thus obtained is Vj. Now, to fill the fk value in the rth row of R̃i, we first extract the

value combination in the rth row of view solution of Vi. From this value combination, we project

the attributes corresponding to Vj, and denote it by v. Now, we iterate over the solution set of

Vj and compute the cumulative sum of the cardinality entries till we reach v. This sum gives

us the fk value corresponding to the rth row of R̃i, and we thus obtain R̃i for each relation

Ri. The set of relation summaries gives us the database summary. We already saw a sample

database summary in Figure 1.7. (The figure shows the PK columns instead of the number of

tuples purely for simplicity.)

27

Chapter 5

Tuple Generator

The Tuple Generator component resides inside the database engine, and needs to be

explicitly incorporated in the engine codebase by the vendor. As a proof of concept, we

have implemented it for the Postgres engine by adding a new feature called datagen. On

enabling this feature, whenever a query is fired, the executor does not fetch the data from

the disk but is supplied by the Tuple Generator instead in an on-demand manner, using

the database summaries generated earlier.

Each row in the relation summary has a value combination and an associated NumTuples

entry. We will consider the pk values to be the row numbers of the relation. Therefore,

to get the rth tuple of a relation Ri, the pk is chosen as r and the rest of the attributes

come from the relation summary. We iterate over the rows of R̃i and take the cumulative

sum of the NumTuples entries until the sum exceeds r. Say the cumulative sum exceeds

the value r in jth row of R̃i. So the rest of the attributes of the rth tuple are precisely the

same as those present in the jth row of R̃i. For example, the 120th row of S relation in

Figure 1.7, would be 〈120, 20, 15〉.

Note that this form of tuple generation is found to be much faster than DataSynth be-

cause they assign values to each attribute conditioned on the values assigned to the prior

attributes. The rate of tuple generation is reported in Section 6.5.

28

Chapter 6

Experiments

Having presented the salient features of the PM tool, we now move on to its empirical

evaluation. PM is completely written in Java, running to over 15K lines of code. We use

the popular Z3 [6] for solving LPs. For a fair comparison of PM’s performance against

DataSynth, we extended the implementation of DataSynth to also handle constraints in

DNF.

Database Environment The TPC-DS [10] decision-support benchmark is used as

the foundation for our experiments. The default database size was 100 GB on which

we executed a complex query workload, WLc, featuring 131 queries. These queries were

created by mildly modifying the native TPC-DS queries so that they were compatible

with our assumptions on cardinality constraints.

While PM was able to comfortably handle the above scenario, the same was not true

for DataSynth, and we therefore had to scale down the database size and/or simplify

the query workload for it to reach completion in some cases. The simplified workload is

denoted by WLs in the sequel.

System Environment We used PostgreSQL v9.3 [11] engine for our experiments,

with the hardware plaform being a vanilla HP workstation with a 3.2 GHz 16-core pro-

cessor, 32 GB memory and a solid-state hard drive.

6.1 Quality of Volumetric Similarity

We begin by investigating how closely volumetric similarity, as modeled by the operator output

cardinalities, is achieved between the client and vendor sites. As discussed earlier, DataSynth

29

incurs errors in satisfying cardinality constraints due to two reasons: (1) the probabilistic

sampling technique, and (2) maintenance of referential integrity. In contrast, PM incurs only

the referential integrity errors.

The first of these two sources is dependent on the data scale while the second error is

dependent only on the nature of CCs and the quality of the LP solution. This means that,

on increasing the scale of the data, the sampling errors (in absolute terms) increase while the

integrity errors remain constant.

However, the relative percentage error (RE) decreases with increasing the scale. We define

RE as follows:

RE =
| observed cardinality - actual cardinality |

actual cardinality
x 100

When DataSynth and PM were run on the 100 GB database with the WLs workload, 311

cardinality constraints were obtained from the AQPs (the number of variables in the constraints

were, of course, hugely different for the two techniques, as explained in Section 6.2). For the

databases materialized from these constraints, we have shown in Figure 6.1, the percentage of

CCs that fall within a given relative error of volumetric similarity.

We have plot the percentage of cardinality constraints against RE suffered in meeting these

constraints. Out of the 311 CCs, the plot includes the 271 constraints that had the required

output cardinality > 70. For the remaining 40 constraints, we computed the absolute error

(AE), computed as |observed card. - actual card.|, since RE magnifies even for small absolute

errors. The maximum AE for remaining constraints was 512 in DataSynth and 38 in PM while

the average AE was 69.3 in DataSynth and 4.1 in PM.

30

Figure 6.1: Quality of Volumetric Similarity

From the plot, it can be seen that PM satisfies virtually all the CCs within a relative error

of 10%, whereas DataSynth goes up to more than 60% relative error to achieve a similar CC

coverage.

As an aside, it is interesting to note that DataSynth has to contend with both negative and

positive relative errors, due to its sampling core – in fact, we found that about one-third of

the CCs suffered negative relative errors. In contrast, PM only generates positive errors due to

the addition of extra tuples that are required to satisfy referential integrity. From a practical

standpoint, it is perhaps preferable to have positive errors since they induce greater stress on

the data processing elements in the engine.

Finally, even with regard to referential integrity alone, we find that the number of extra

tuples that are required to be added by PM are substantially smaller than those injected by

DataSynth. This is because the integrity errors are amplified by the impact of the sampling

errors. This effect is quantified in Figure 6.2, where the number of extra tuples inserted is

plotted on a log-scale for representative TPC-DS tables. We see here that PM is often an

order-of-magnitude smaller with regard to the addition of these spurious tuples.

31

Figure 6.2: Extra tuples for Referential Integrity

Also note that the sampling errors in DataSynth leads to negative errors also. By negative

errors we mean that the actual card. is greater than the observed card. for the CC. The RI

errors are always additive in nature, which are comparatively better than the negative errors

because the negative errors underplay the volumetric flow, which may prevent the volume

related performance bugs from surfacing. In our experiments we found, DataSynth has negative

errors for 37% of the CCs.

As we mentioned earlier that RI errors are absolute in nature. These are the errors that the

dimension tables incur if the fact tables (who possess foreign key referring dimension tables) end

up getting a value combination that is not consistent to the dimension table. In our experiments

we also found that the errors due to sampling technique also escalates the RI errors. We show

this observation in Figure 6.2. It shows the comparison of the number of extra tuples added to

the dimension tables in the outputs generated from workload-1. We can easily see that PM, in

general, has lesser number of extra tuples to be added.

6.2 Scalability with Workload Complexity

We now turn our attention to comparison of the complexity of the underlying LP that is

formulated in PM and DataSynth. Since the LP complexity is proportional to the number of

32

variables in the problem, we compare this number for the two techniques. Further, since the

LP complexity is independent of the database size, we show the comparison only for the 100

GB instance.

The number of LP variables for a representative set of TPC-DS relations, including the

major fact and dimension tables (catalog sales, store sales, item) is captured, on a log-scale,

in Figure 6.3 for the WLc workload. We observe here that the LPs formulated using the

region-partitioning strategy in PM have several orders of magnitude fewer variables than the

corresponding LPs derived from the grid-partitioning in DataSynth. For instance, consider

the catalog sales table – the number of variables created by DataSynth was almost 5.5 million,

which is reduced to 1620 by PM.

Figure 6.3: Number of LP variables (WLc)

From an absolute perspective also, the large number of variables created by DataSynth is a

critical problem since the LP solver crashed in handling these cases. In marked contrast, PM’s

LP has only a few thousand variables which were easily solvable in less than a minute. Further,

even when we switched to the simple workload, WLs, the LP solution time for DataSynth was

almost an hour, whereas PM completed in a few seconds. These statistics are quantitatively

shown in Table 6.1.

33

Complex Workload (WLc) Simple Workload (WLs)

DataSynth PM DataSynth PM

crash 58 sec 50 min 13 sec

Table 6.1: LP Processing Time

Since, workload-2 is a superset of workload-1, the number of variables in the LPs of the

former are more. As we can see from the figure, for the three relations- catalog sales, item and

store sales in workload-2, DataSynth’s formulation has over a million variables. The solver was

unable to handle such a complex LP and got crashed. On the other hand, PM’s LP had only

a few thousand variables which were easily solvable in less than a minute.

6.3 Scalability with Materialized Data Size

This experiment compares the data instantiation times, post-LP solution, of DataSynth and

PM on the WLs workload. While PM, in principle, due to its summary-based approach, does

not have to instantiate the data immediately, we assume in this experiment that the vendor

requires complete materialization of the data. In essence, the results here capture the difference

in speed between the sampling-based approach of DataSynth and the alignment-based technique

of PM.

The experimental results are shown in Table 6.2, where we also present, for comparative

purposes, the performance with 1 GB and 10 GB databases, apart from the default 100 GB

database. We see here that there is a huge reduction in the materialization time of PM at all

database scales. Further, even in absolute terms, PM is able to output a 100 GB database in

just over 10 minutes, whereas DataSynth takes 42 hours for the same task.

Size (in GB) DataSynth PM

1 28 min 16 sec

10 4 hours 114 sec

100 42 hours 644 sec

Table 6.2: Data Materialization Time

The preprocessing step before formulating the LPs which include the views construction

and decomposition into sub-views has been taken from DataSynth directly. The running time

of this step is around 4s irrespective of size of database. Figure ?? shows the running time of

34

the subsequent components for the three data scales. LP Formulation & Solving time includes

the time for running the respective partitioning algorithm for all the sub-views, constructing

LP constraints from the CCs, adding the consistency constraints and finally solving the LPs.

The post-processing time includes the time for constructing the view solutions from the LP

solution, which in DataSynth is based on the sampling technique and in PM is based on the

deterministic aligning technique. This also includes the time for making the views consistent

and finally extracting relation summaries from them. We show the post processing time in

PM as a summation of two entries. Here, the second entry is the time to generate the static

dump from the summary if one desires. Particularly, the system is ready for query execution

even without this additional time. As we can see that first entry does not scale with the

different database sizes. This shows that PM is truly data scale independent. On the contrary,

DataSynth experiences a linear growth in the post-processing time with size of data to be

generated.

6.4 Scalability to Big Data Volumes

In our next experiment, we validated the ability of PM, thanks to its summary-based tech-

nique, to scale to Big Data volumes. To demonstrate this, we modelled an exabyte-sized (1018

bytes) data scenario as follows: We used CODD to obtain the optimizer-chosen plans at the

exabyte database scale for all the workload queries. To get AQPs for this database, we executed

the obtained plans on the 100 GB instance and scaled the intermediate row counts with the

appropriate scale factor. PM was able to formulate and solve the LPs (one per relation) and

generate the database summary in around 150 seconds. Once the summary is generated, the

database can go ahead and start injecting the workload queries since the data can be produced

dynamically.

6.5 Dynamism in Data Generation

In our final experiment, we wish to highlight PM’s ability, due to its Tuple Generator and

Database Summary architecture, of producing tuples on-the-fly instead of first materializing

them and then reading from the disk. To verify whether dynamic generation can indeed produce

data at rates that are practical for supporting query execution, we compared the total time

that PM’s tuple generator took to construct and supply tuples to the executor, while running

simple aggregate queries, as compared to the standard sequential scan from the disk.

35

Rel. Name Size
Row

count
Scan rate (in GB per sec) Scan rate (in million tuples per sec)

(in GB) (in million) Disk Dynamic Disk Dynamic

store returns 3 29 0.19 0.38 1.81 3.62

web sales 10 72 0.23 0.40 1.67 2.88

inventory 19 399 0.18 0.26 3.73 5.39

catalog sales 20 144 0.43 0.42 3.13 3.00

store sales 34 288 0.20 0.39 1.71 3.31

Table 6.3: Data Access Rate

The results of this experiment are shown in Table 6.3 for the five biggest relations in the

100 GB database instance. We see here that the tuple generator is not only competitive with a

materialized solution, but is in fact typically faster. Therefore, using dynamic generation can

prove to be a good option since it can help to eliminate the large time and space overheads

that are incurred in (1) dumping generated data on the disk, and (2) loading the data on the

engine under test.

36

Chapter 7

Conclusions

The ability to synthetically regenerate data that accurately conforms to the volumetric

behavior on queries at client sites is of crucial importance to database vendors, and will

become even more so with the advent of Big Data applications. In this report, we have

proposed PM, a data regeneration tool that takes a substantial step forward towards

achieving this goal. Specifically, by reworking the basic LP problem formulation into a

region-based variable assignment, PM improves on DataSynth’s performance by orders of

magnitude with regard to problem complexity, data materialization time, and scalability

to large volumes. Secondly, by using a deterministic alignment technique for database

consistency, it provides far better accuracy in meeting volumetric constraints as com-

pared to the probabilistic approach employed in DataSynth. Finally, its summary-based

framework organically supports the dynamic regeneration of streaming data sources, an

essential pre-requisite for efficiently testing contemporary deployments.

In future, one can extend the PM framework by covering a richer set of query operators,

such as grouping functions.

37

Bibliography

[1] A. Arasu, R. Kaushik and J. Li, “Data Generation using Declarative Constraints”, ACM SIGMOD, 2011. ii, iii, 1, 3, 5, 10,

12, 13, 21

[2] A. Arasu, R. Kaushik and J. Li, “DataSynth: Generating Synthetic Data using Declarative Constraints”, VLDB, 2011. iii,

1, 3

[3] Ashoke S. and J. R. Haritsa, “CODD: A Dataless Approach to Big Data Testing”, VLDB, 2015. 10, 11, 14

[4] C. Binnig, D. Kossmann, E. Lo and M. Tamer Ozsu, “QAGen: Generating Query-Aware Test Databases”, ACM SIGMOD,

2007. iii, 1, 2

[5] E. Lo, N. Cheng, W. W. K. Lin, W. Hon and B. Choi, “MyBenchmark: generating databases for query workloads”, PVLDB,

2014. 1

[6] L. de Moura and N. S. Bjørner, “Z3: an efficient SMT solver”, TACAS, 2008. 14, 29

[7] R. E. Tarjan and M. Yannakakis, “Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hyper-

graphs, and Selectively Reduce Acyclic Hypergraphs”, SICOMP, 1984. 13

[8] R. S. Trivedi, I. Nilavalagan and J. R. Haritsa, “CODD: COnstructing Dataless Databases”, ACM DBTest, 2012. 10

[9] TPC-H. www.tpc.org/tpch 2

[10] TPC-DS. www.tpc.org/tpcds 29

[11] 2013. PostgreSQL. www.postgresql.org/docs/9.3/static/release.html 29

38

www.tpc.org/tpch
www.tpc.org/tpcds
www.postgresql.org/docs/9.3/static/release.html

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Workload Dependent Generationbinnig
	1.2 The DataSynth Generatorarasu, datasynth
	1.3 Limitations of DataSynth
	1.4 Proposed PM Generator
	1.5 Organization

	2 PM Architecture
	2.1 Client Site
	2.2 Vendor Site

	3 LP Formulation
	3.1 Mathematical Basis for Small Size LP
	3.1.1 Simple LP Formulation
	3.1.2 Reducing the Size of the LP

	3.2 Deriving the Optimal Partition

	4 Database Summary Generator
	4.1 Constructing Solution for the View
	4.1.1 Sub-view Ordering
	4.1.2 Aligning
	4.1.3 Merging

	4.2 Making Views Consistent
	4.3 Constructing Relation Summary

	5 Tuple Generator
	6 Experiments
	6.1 Quality of Volumetric Similarity
	6.2 Scalability with Workload Complexity
	6.3 Scalability with Materialized Data Size
	6.4 Scalability to Big Data Volumes
	6.5 Dynamism in Data Generation

	7 Conclusions
	Bibliography

