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Abstract

Graphics processor (GPU) have emerged as a powerful co-processor for general-purpose com-

putation. Compared with commodity CPUs, GPUs have an order of magnitude higher com-

putation power as well as memory bandwidth. The execution time of database query can be

reduced by using GPU as a coprocessor to CPU. This can be done by dividing the computation

task between both the processors optimally. Depending upon the data size, algorithm used for

operator and input data distribution, either of the CPU or the GPU could perform better than

the other respectively. We try to come up with the solution to partition the operators of query

plan tree on the CPU and GPU, so as to execute the query faster than executing query on

contemporary database engine. We have initial promising result in which our CPU-GPU based

query plan implementation is performing better than the contemporary database engines like

MonetDB [5].
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Chapter 1

Introduction

Since the invention of the relational database management system (RDBMS), perfor-

mance demands of the applications have been increasing. To achieve high performance

in RDBMS, queries processed in database engine should be executed as fast as possible.

A database execution plan tree which is usually a binary tree, consist of set of nodes.

Each node of the plan tree represents a operator. To execute a operator (e.g. : Join) an

algorithm (e.g.: Hash Join, Sort Merge Join etc.) is executed. A query plan tree is shown

in Figure 1.1.

In [1] a query plan tree was executed on discrete heterogeneous architecture having GPU

of compute capability 1.x, which does not support multiple stream execution [3]. They

reported no speed up of their GPU implementation or CPU-GPU implementation of plan

tree compared to the CPU implementation of their plan tree. In [2], researchers used

coupled architecture for processing the query. After advent of modern GPUs like Kepler

3.x [7] and Maxwell 5.x architecture the power of multiple streams can be exploited to

reduce the execution time of database query.
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Figure 1.1: Execution plan tree
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Chapter 2

Background on GPU

There are two types of heterogeneous architecture

1. Discrete Heterogeneous Architecture

2. Coupled Heterogeneous Architecture

In discrete heterogeneous architecture, CPU and GPU are connected through PCIe bus as

shown in Figure 2.1. Both CPU and GPU have their own memory designed specifically to

their requirements. In coupled architecture, CPU and GPU both are integrated on single chip.

The coupled architecture is less powerful than the discrete architecture because of the following

reasons:

• The number of cores dedicated to the GPU are lesser than the GPU in discrete het-

erogeneous architecture. This is because CPU and GPU have to share space on single

chip.

• GPU has the requirement of high bandwidth memory, as CPU and GPU are integrated

on single chip, GPU have to use memory designed specifically for the CPU which is low

latency and low bandwidth.

From now onwards we will regard CPU as the host and GPU as the device.
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Figure 2.1: Discrete Architecture

Kernel is a basic function which executes on GPU. It can be written in CUDA or OpenGL.

Whenever the host thread launches (calls) the kernel, kernel is scheduled on GPU and then

kernel is executed on the GPU along with the control returning to the host thread i.e launching

of the kernels by the host thread on the GPU is non blocking. Therefore host thread could

launch multiple kernels even though the first kernel has not even started execution.

Thread block is a collection of threads. Grid is a collection of thread blocks. When kernel is

launched on a GPU, the programmer have to specify the dimension of the grid i.e. number of

thread blocks, dimension of the thread blocks i.e. number of threads in the thread block. Each

thread runs the instructions in the kernel independent of each other, therefore each thread

requires its own set of registers for the variables. The programmer could write the kernel

in such a way that each thread can allocate memory for the variables on the on chip cache

(shared memory), so that the thread does not have to access the device memory repeatedly

for the variable. Shared memory is allocated on a per thread block basis therefore all the

threads belonging to same thread block can access shared memory allocated for that thread

block. From the above we conclude that the thread block is collection of threads and thread

4



block requires registers, shared memory to execute. From now onward we will call threads in

the thread block, registers and shared memory required by the thread block as the resources

required by the thread block to execute.

GPU contains few streaming multiprocessor (SMX). Each SMX has fixed

1. number of registers.

2. amount of shared memory (software controlled cache in contrast to CPU which has hard-

ware control cache).

Each SMX can have at most certain number of

1. threads to execute.

2. thread blocks to execute.

Table 2.1 shows the configuration of Tesla k40m GPU.

Resources Quantity

# of SMX 15

# of registers on SMX 64K of 4 Bytes each

Shared Memory Per SMX 48KB

Max # of threads on SMX 2048

Max # of thread blocks on SMX 16

Table 2.1: Configuration of Tesla k40m

We will define some terms which we will use further in the report:

1. A thread block is scheduled when it gets resources to execute on any SMX of the

GPU.

2. A thread block is executed when all of its threads have executed the instructions in

the kernel and released their resources back to their SMX.

3. A kernel is scheduled when atleast one thread block of kernel has been scheduled.

4. A kernel is executed when all of its thread blocks have been executed and released

their resources back to their SMX respectively.

5



5. A kernel is not resource configurable when we cannot control the number of thread

blocks launched for that kernel. The number of thread blocks launched depends upon the

size of the input data to the kernel and number of threads launched in the thread block.

Two kernels in GPU cannot communicate with each other therefore no pipelining is possible

between two kernels in GPU, hence every kernel is blocking node in tree. A thread block of a

kernel is a schedulable unit on SMX i.e. either all the threads of a thread block are scheduled

on SMX or non of them is scheduled on SMX. Once the thread block is scheduled to SMX

it will not be preempted from that SMX i.e. until all of its threads had executed all of the

instructions in its kernel, it will not be preempted from that SMX.

2.1 Maximum resident thread block of kernel

Each thread block of the kernel requires the resources in the GPU, therefore only limited number

of thread blocks could be launched on the GPU. The maximum number of thread blocks of

the kernel that can be resident on the GPU simultaneously is called max residency of kernel.

The maximum resident thread block of any kernel can be computed by Algorithm 1, given the

resources available with GPU and the resources required by a thread block.

int MaxResidentTBOfKernel( ResourcesGPU ,ResourcesTB) {

registerTB ← GPU.SMX.registers
TB.registers

{GPU.SMX.registers = 64K for k40m}

threadsTB ← GPU.SMX.threads
TB.threads

sharedMemoryTB ← GPU.SMX.sharedMemory
TB.sharedMemory

return min(registerTB, threadsTB, sharedMemoryTB)

}
Algorithm 1: Max resident thread block of kernel.

From now onwards, we will specify kernel K by

K(number of registers used per thread, shared memory used per thread block,

number of threads in a thread block, number of thread blocks).

2.2 Streams

Stream is a sequence of operations that execute in issue-order on the GPU i.e. the operation

in a stream start execution only when earlier operations in that stream have completed their

execution. Operations in different streams may run concurrently or may be interleaved i.e.

6



different streams may execute their operation concurrently or out of order with respect to each

other. Operation could be memory transfer operation from host to device memory or from

device to host memory or it can be a kernel launch. In Figure 2.2 kernel K1, P1 and Q1 can be

executed concurrently while kernel K2 will only be scheduled when K1 is executed i.e. when

all the thread blocks of kernel K1 are executed.

From now onwards we will say

1. A stream is executed when all its kernels are executed on the GPU.

2. A stream is activated when it is ready to schedule its front kernel on the GPU.

3. A stream is deactivated when it is not ready to schedule its front kernel on the GPU.

For example in Figure 2.2, stream1 is ready to schedule kernel K1 on the GPU. Once the GPU

scheduler has schedule all the thread blocks of kernel K1 on the GPU then Stream1 will be

deactivated as it is not ready to schedule its kernel K2 on the GPU. This is because stream1 is

waiting for kernel K1 to be executed.

Figure 2.2: GPU Scheduler

2.2.1 How streams can be created

Streams can be created in two ways:

1. By calling CUDA function cudaStreamCreate explicitly and launching the kernel in the

respective streams.

2. By creating POSIX pthread (only available after CUDA 7.0), each pthread will have

its respective default stream. Kernels launched by the pthread will be executed in its

own pthread’s default stream. Therefore kernels launched by different pthreads can run

concurrently and may be interleaved.
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Chapter 3

Our Contribution

3.1 Assigning the stream Id to nodes in plan tree

In a database query plan tree, many nodes in a tree could be executed concurrently, for example

all the leaf nodes of the tree could be executed concurrently. With the help of multiple streams,

multiple kernels could be executed concurrently by spawning each of them into distinct streams.

Assigning different streams to nodes in the plan tree, which could run concurrently, helps us in

following ways:

1. To have more possible ways to divide the task between CPU and GPU.

2. If one stream of GPU is blocked, then other stream could be processed by GPU scheduler,

hence efficient utilization of resources of the GPU.

Database plan tree executes in following manner. If a node has child nodes then it should start

executing only after its child nodes had completed their execution. Therefore we will require

synchronization between the execution of parent node with child node. We assign distinct

streams to the nodes of the binary plan tree by the Algorithm 2. The Algorithm 2 assigns

distinct streams to nodes which could run concurrently and synchronize the streams which

requires synchronization to execute the plan tree correctly.
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void AssignStreamId (root, streamId) {
if root=NULL then

return;

end

root.streamId=streamId;

streamStack[streamId].push(root);

if root has two child then

leftStreamId=getNewStreamId();

rightStreamId=getNewStreamId();

AssignStreamId (root.left, leftStreamId);

AssignStreamId (root.right, rightStreamId);

streamId has to synchronize with the execution of the leftStreamId and

rightStreamId

else

AssignStreamId (root.left, streamId);

AssignStreamId (root.right, streamId);

end

}
Algorithm 2: Converting binary tree into set of streams

Figure 3.1 gives running example of our Algorithm2. The binary tree shown in Figure 3.1 is

cut down into five distinct stream each with different color. Stream yellow have to synchronize

with stream blue and stream green and stream red have to synchronize with the execution of

stream yellow and stream purple.

By the Algorithm 2, for a parent node having one child node, both the nodes will be put up

in a single stream. Implicit synchronization (i.e. nodes in stream will be executed in order)

will maintain the execution order child→ parent. For nodes having two child nodes, all three

nodes will be put in three distinct streams therefore we have to use explicit synchronization

i.e. making wait the stream in which parent node belongs for the streams in which child nodes

belongs, to maintain the execution order. child1 → parent, child2 → parent.

9



Figure 3.1: Assigning stream to nodes of binary tree

3.2 Round robin scheduler of Nvidia

Nvidia does not provide any official documentation of how the scheduling of kernels from mul-

tiple streams takes place, therefore we conducted some experiments to know the algorithm.

There are other internal information about the GPU which are not revealed by Nvidia because

of the business strategy or rapid change in the architecture of GPU. It might happen that

some features are upgraded in such a way that program written for previous generation are

not portable to next generation of GPU. Therefore Nvidia doesn’t reveal some features which

might affect program portability.

We launched two kernels K1(20, 48KB, 128, 16), K2(18, 0KB, 64, 1) in two different streams

S1 and S2. The maximum thread block residency of K1 is fifteen on k40m GPU from Algorithm

1 and Table 2.1. We launched sixteen thread blocks which is one greater than maximum thread

block residency of K1. We observe that

• When two streams were activated in order S1 → S2, then the 16th thread block was

scheduled only after any one thread block of K1 was executed and release its shared

memory resources to SMX. Kernel K2 was not scheduled until the 16th thread block of

kernel K1 had been scheduled, although resources were available to execute the single

thread block of kernel K2 with the first fifteen executing thread blocks of kernel K1.

• When we altered the launching order of streams i.e S2 → S1 then both the kernels K1

and K2 start simultaneously, hence may reduce the total execution time of two kernels.

10



Similar experiment was conducted by launching two kernels K1(28, 0KB, 992, 31), K2(28, 0KB, 32, 1).

The max residency of K1 is 30 from Algorithm 1 and Table 2.1. We observed that

• S1 → S2: The 31st thread block was scheduled only after any one thread block of K1 was

executed and release its thread resources to SMX. The kernel K2 was not scheduled until

31st thread block of kernel K1 is scheduled.

• S1 → S2: Both the kernels K1 and K2 start simultaneously.

From the above observation we conclude that

1. The stream scheduler will schedule all the thread blocks of kernel in the stream it processes

currently. If it is not able to schedule all the thread blocks, it will wait for resources to

be freed and will not process any other stream, even though kernel in different streams

can be launched concurrently.

2. After scheduling all the thread blocks of kernel in current stream, it will start processing

another stream in round robin order.

11



The round robin algorithm is illustrated in Algorithm 3.
Result: Schedule all the streams launched on GPU.

1: void RoundRobin(streamStack, numberOfStreams) {
2: for i← 0, numberOfStreams do

3: if streamStack[i].empty() then

4: numberOfStreams← numberOfStreams− 1;

5: remove the streamStack[i];

6: else if streamStack[i] is active then

7: kernel← streamStack[i].top();

8: streamStack[i].pop();

9: for all threadBlock in kernel do

10: ScheduleThreadBlockSMX(threadBlock);

11: end for

12: deactivate the streamStack[i] until all the thread block of kernel are executed;

13: end if

14: end for

}
Algorithm 3: Round Robin Scheduler of k40m

Result: Schedule the given threadBlock on any one SMX.

void ScheduleThreadBlockSMX(threadBlock) {
while True do

for i← 0, numberOfSMX do

if CompareResources(threadBlock.resources, SMX[i].resources) then

AllocateResources(threadBlock.resources,

SMX[i].resources);

return;

end if

end for

end while

}

Result: Returns true when resources are available to execute the given TB on given

SMX.

bool CompareResources(TB, SMX) {
b0← TB.registers ≤ SMX.registers;

b1← TB.sharedMemory ≤ SMX.sharedMemory;

b2← TB.threads ≤ SMX.threads;

b3← SMX.threadBlock ≥ 1;

returnb0&b1&b2&b3;

}

12



Result: Allocate resources for the thread block TB from given SMX
AllocateResources(TB, SMX) {
SMX.registers← SMX.registers− TB.registers
SMX.sharedMemory ← SMX.sharedMemory − TB.sharedMemory
SMX.threads← SMX.threads− TB.threads
SMX.threadBlock ← SMX.threadBlock − 1
}

As the scheduling of streams should be efficient and fast, it should be less complex and have

less storage requirement. Therefore Nvidia might have choose algorithm 3 for scheduling the

streams.

3.3 Executing the plan tree

Assume that the plan tree has directed edge from child node to parent node, the topological

ordering of tree gives the valid execution sequence of kernel nodes because in the topological

ordering of tree all the child nodes will be executed before the parent node which is our require-

ment to execute the database plan tree. To execute the given plan tree, we will cut down the

tree into set of streams by Algorithm 2. Then the streams having leaf nodes will be activated

initially. For the stream which have to synchronize with the execution of two other streams,

will be activated as soon as two others streams had been executed. By this way, whole plan

tree is executed by the GPU.

We observed that the order in which streams are initially activated can give different execu-

tion time of the tree. For example: In Figure 3.2, we have tree with six kernel nodes. Node

KSM(20, 48KB, 64, 15) signifies that each of its thread blocks will acquire all the shared memory

on each SMX of GPU k40m. While node KNSM(28, 0KB, 64, 4) signifies that each of its thread

blocks will not acquire any shared memory on SMX. We cut down this tree into five streams

by the Algorithm 2. Streamy, Streamb, Streamr will be activated initially as they contain the

leaf node while Streamp has to wait for execution of Streamy, Streamb and Streamn has to

wait for execution of Streamp, Streamr.

13



Figure 3.2: Tree with six kernel nodes and five streams.

We executed the plan tree on GPU and observed the following

• If streams are activated in the order Streamy → Streamb → Streamr then kernel in

Streamb has to wait for completion of a thread block of kernel in Streamy because of the

lack of shared memory resource. This will in turn make wait kernels in Streamr because

round robin scheduler will not process Streamr unless it schedules kernel in Streamb.

• If they are activated in the order Streamy → Streamr → Streamb then the kernel in

Streamr will be executed concurrently with kernel in Streamy.

The time line diagram for both the cases generated by nvcc pro-filer is shown in Figure 3.3 and

Figure 3.4. The overlapping sequence has less execution time than non overlapping sequence.

For some cases it might happen that two kernels which are both memory intensive might degrade

the performance of each other and get more execution time if they are overlapped rather than if

they were not overlapped. From above we conclude that the order in which streams are initially

activated can give different execution time of the tree.

14



Figure 3.3: Non overlapping Streamr and Streamy

Figure 3.4: Overlapping Streamr and Streamy
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Chapter 4

Experiments

4.1 Machine configuration

The architecture of machine we used for our experiments is discrete heterogeneous architecture.

Table 4.1 and Table 4.2 shows the configuration of the Xeon CPU and Tesla k40m GPU [7]

used, respectively.

Number of cores in CPU 6

L3 cache size 15MB

Host memory 24GB

Table 4.1: CPU: Intel(R) Xeon(R) CPU E5-2620

Number of SMX 15

Number of cores per SMX 192

Number of registers per SMX 64K

Size of on chip shared memory per SMX 48KB

Size of each register 4B

Device memory 12GB

Table 4.2: GPU: Tesla k40 GPU

4.2 Available algorithm for database operators

We have an implementation of most of the logical database operators algorithm for GPU in

CUDA, for CPU in OpenMP from [6] shown in Table 4.3.

16



Operator Algorithm on CPU Algorithm on GPU

Sort Quick sort Bitonic sort, Radix sort

Aggregate Parallel aggregate Parallel reduce

Group By Sort group by Sort group by

Filter Sequential scan Sequential scan

Join HJ, SMJ, INLJ, NLJ Hash join

Table 4.3: Algorithms for database operators on CPU and GPU

Currently algorithms are implemented in OpenMP for CPU and in CUDA for GPU [6].

Algorithms are not able to handle:

• Multiple attribute group by operator.

• Multiple attribute sort operator.

• Non equi joins.

• Date, string and float data type.

• Like and EXISTS operator.

• Nested queries.

Because of the above limitations, we cannot execute any TPC-H query [8] without modification.

Therefore we selected three TPC-H queries from twenty two TPC-H queries and modified them

by replacing

• Multi attribute group by by single attribute group by.

• Multi attribute sort by single attribute sort.

• Non equi join with equi join.

• Date or string data type attribute of a relation with similar selectivity integer or float

data type attribute of respective relation.

• Rounded off float values of attribute to greatest integer values.

• Unnested the nested TPC-H Query 17.

The algorithms were using multiple global variable which lead to inconsistent value in mul-

tithreaded environment. We modified the algorithm as per the requirement of multithreaded

environment.
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4.3 TPC-H Database

TPC-H Database [8] with scaling factor of 10 was generated i.e. size of whole database was

10GB. While executing query on GPU, we didn’t want to transfer some intermediate output

to host memory because of insufficient space on GPU device memory therefore we scaled our

database to 10GB only which is less than 12GB size of device memory. A higher scaling factor

may be tried out as current scaling factor didn’t cause insufficient device memory for queries

which we used for our experiments. The generated database contains eight relations. Relations

and their respective cardinalities are shown in Table 4.4.

Relation Cardinality

Customer 1.5m

Lineitem 59m

Part 2m

Partsupp 8m

Region 5

Nation 25

Supplier 0.1m

Order 15m

Table 4.4: TPC-H Database of size 10GB

4.4 TPC-H Queries

Modified TPC-H queries used for our experiments are following:

4.5 TPC-H Query 5

• Select c custkey, sum(c acctbal)

From orders, lineitem, supplier, nation, customer, region

Where c custkey = o custkey

and l orderkey = o orderkey

and l suppkey = s suppkey

and s nationkey = n nationkey

and n regionkey = r regionkey

and r regionkey = 3

and o totalprice ≤ 50000
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and c custkey

and c custkey

Limit 20

4.6 TPC-H Query 10

• Select c custkey, sum(l extendedprice) as revenue

From customer, orders, lineitem

Where c custkey = o custkey

and l orderkey = o orderkey

and o totalprice ≤ 20000

and l quantity ≤ 12

Group by c custkey

Order by c custkey

Limit 20

4.7 TPC-H Query 17

• Select sum(R.l extendedprice)

From

(

select *

from lineitem, part

where p partkey = l partkey

and p size=1

and p retailprice ≤ 1040.99

) as R,

(

select

p partkey, floor(avg(l quantity)/33) as avg quantity

from lineitem, part

where l partkey = p partkey

group by p partkey

having floor(avg(l quantity)/33) ≥ 1

) as S

Where R.l quantity=S.avg quantity
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4.8 Experimental setup

• Columnar Storage: We used columnar storage model for storing our relations on the

file-system as well as in the memory. Each attribute of relation was represented by

an array of structures. Each structure element is represented by a pair of integers <

row id, value >. Each integer was of 4B.

• In Memory Database: To be fair with execution of plan tree on CPU and GPU, we

assume that both of the processing unit have required input data for processing, in their

respective memory i.e. we excluded initial disk transfer cost and host to device memory

transfer cost in the reported execution time.

• MultiCore OpenMP: We had exported GOMP CPU AFFINITY environment variable

of operating system to ”0 1 2 3 4 5 0 1 2 3 4 5” which signals the operating system to

schedule the OpenMP threads consecutively to the cores i.e. ith thread of OpenMP will

be scheduled to (i%6)th core of the Xeon six core CPU.

4.9 Performance

We analysed the performance of each available algorithm and modified TPC-H queries. We

validated the output of algorithms by running queries shown in Table 4.5 on MonetDB database

engine [5] so as to be sure that the algorithms are working correctly. We similarly validated the

output of modified TPC-H queries with MonetDB database engine. The MonetDB database

engine is multicore, in memory, columnar storage database engine. All the performance reading

of MonetDB are given by running the query iteratively until the execution time is same for three

consecutive reading. This is done so that required data is in the host memory. Comparing our

performance with MonetDB is unfair for our OpenMP, CUDA implementation because of the

following reasons:

1. The database on MonetDB has indexes built already on some of the columns in relation

according to TPC-H benchmark index queries. While currently we don’t have provision

for building the indexes on the columns in OpenMP or CUDA.

2. The MonetDB also stores some intermediate results and creates indexes on the fly for the

columns, so that it could improve the performance of the query.

3. MonetDB has provision for pipelining of data between operators. In pipelining between

operator nodes, parent node operator can start processing data from child node operator
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even though child operator has not completely processed its input data. Pipelining helps

to improve the performance of plan execution.

4. The plan chosen by MonetDB for particular query is generated by estimating cardinality

of the nodes, computing cost of each node in tree etc. while plan chosen for our discrete

heterogeneous architecture is random.

Therefore MonetDB is expected to perform much faster than our OpenMP, CUDA based im-

plementation which does not have any indexes built, storing of intermediate result and pipelin-

ing between operators. In favor of MonetDB, MonetDB has little additional overhead of parsing

the query, finding the optimal execution plan tree to execute the query than our implementation

of OpenMP and CUDA.

Operator Query

Filter Select count(*) from lineitem where l quantity ≥ 1 and

l quantity ≤ 5

Aggregate Select max(l quantity) from lineitem

Sort Select l quantity from lineitem order by l quantity limit 10

Group By Select sum(l linenumber) from lineitem group by l quantity

Table 4.5: Operator and its corresponding query

4.10 Performance of database algorithm

Performance of each database operator on CPU, GPU and MonetDB is shown in Table 4.6.

Operator CPU(ms) GPU(ms)

Filter 127 127

Aggregate 47 41

Sort 3200 1000(radix sort)

Group By 3300 1017

Table 4.6: Performance of operators on CPU(6 threads), GPU(1024 threads, 128 thread blocks)

and MonetDB

• Performance of algorithms on CPU: As Xeon CPU has six cores, we launched six

threads in OpenMP. The increase in number of OMP threads didn’t increase the perfor-

mance of filter and aggregate operator as the algorithm used, have sequential memory
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access pattern which exploit the spatial locality property of the cache. In other words the

algorithms are cache friendly which lead to very high CPU utilization (close to 100%).

Sorting of the array in OpenMP is done by splitting the array into n number of parti-

tion and sorting each partition individually by quick sort. In six thread configuration, 16

independent partitions and for ten threads, 32 independent partitions were created for

same data-set. The Table 4.7 shows thread assignment per core TAPC and partition as-

signment per core PAPC. In 10 thread configuration, only eight thread will be active for

sorting the partitions, because OpenMP starts giving four partitions (ceil(32/10)) to each

thread consecutively and end up giving no partition to 9th and 10th thread. The 10 thread

configuration have execution time 600ms less than six thread configuration as shown in

Table 4.7 although split time for the relation was same for both of the configuration.

# of OpenMP threads TAPC PAPC Time(ms)

6 threads (1,1,1,1,1,1) (3,3,3,3,3,1) 3200

10 threads (2,2,1,1,1,1) (8,8,4,4,4,4) 2600

Table 4.7: Performance of sort on CPU(6threads) and CPU(10 threads)

Group by requires array to be sorted first and then aggregate is performed on each of

the group. Sort has more complexity than aggregate, therefore group by performance is

much similar to sort. We didn’t compare our performance with MonetDB because of the

reasons mentioned in Section 4.6.

• Performance of algorithms on GPU: The performance of the filter operator is shown

in Figure 4.1 with varying the number of threads in thread block and thread blocks (Blue

line represents operator with one thread block).Filter operator has following five kernels:

memset, map, prefix scan, uniform add and scatter. Filter operator had non resource

configurable prefix scan kernel. Rest of the kernels in the filter are high throughput

kernel. Therefore execution time of configuration (*,*,1024,1) i.e. 351ms is just three

times lower than (*,*,1024,128) although number of thread block given to execute in later

128 times higher.

The Performance of aggregate operator is shown in Figure 4.2. Aggregate operator uses

single kernel K(32,528,*,*). It has linear speed up from 1 thread block to 30 thread block

(With (32,528,1024,30) its execution time is 50ms). This is because max residency for

K(32,528,1024,*) is 30 thread block.

We use radix sort algorithm imported from thrust library [9] for the sort operator in our
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experiments as it is performing three times faster than bitonic sort from [6].

Group by operators are implemented by performing sorting followed by aggregate on each

group. Bitonic sort group by execution time is much lower than radix sort group by as

can be seen from the Figure 4.3 and 4.4.

Figure 4.1: Execution time of filter operator on GPU
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Figure 4.2: Execution time of aggregate operator on GPU

Figure 4.3: Execution time of bitonic sort group by operator on GPU
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Figure 4.4: Execution time of radix sort group by operator on GPU

4.11 Performance of TPC-H Queries

Whenever a query is fired on the database engine to execute, it first parse the query and then

create a physical execution plan tree for the query. The execution plan tree is created by

performing cost analysis of each operator to be executed in the plan tree. Our objective in this

project is to execute the given physical execution plan tree on the heterogeneous architecture as

fast as possible. Following are the five ways to execute the plan tree on discrete heterogeneous

architecture.

1. Sequential execution on CPU (SEC ): In this each node of plan tree is executed on

the CPU one after the completion of another. The nodes are executed in topological order

of the tree.

2. Sequential execution on GPU (SEG): In this each node of plan tree is executed on

the GPU one after the completion of another.

3. Concurrent execution on the GPU (CEG): In this we divide the tree into set of

streams, then execute the stream concurrently on GPU. Currently the kernels of the

algorithms like hash join, filter are not resource configurable. Hence each operator node

in tree consumed all the resources and didn’t allow any other operator node to execute

concurrently with it on the GPU. Therefore performance of CEG is similar to SEG.
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4. Sequential Execution on CPU-GPU (SEH ): We first executed the plan tree on the

GPU & CPU sequentially. Whenever a node is outsourced to CPU, GPU has to transfer

the input data of the node to host memory then it has to wait for the execution of the

node on the CPU. After execution of node on CPU, CPU transfers output data to device

memory and then GPU starts execution on output data. We apply following greedy rule to

outsource the node to CPU. Nodes whose summation of execution time on CPU, transfer

time of its input data from device to host memory and transfer time of its output data

from host to device memory is lesser than execution of nodes on GPU, were outsourced to

CPU so that overall execution time reduces. Ideally to calculate to execution time, a cost

formulae for the operator should be built which takes into consideration algorithm used

for the operator, input data size and input data distribution. Similarly for calculating

transfer time we should estimate the input and output cardinality of the outsourced

operator accurately.

5. Concurrent execution on CPU-GPU (CEH ): It is combination of CEG and SEH.

(a) We divide the tree into set of streams.

(b) We follow greedy rule mentioned in SEH.

(c) Execute the streams concurrently on GPU.

In CEH, if GPU has some operations to execute in other stream then GPU does not

have to wait for memory transfer from GPU to CPU, CPU to execute node and memory

transfer from CPU to GPU i.e. nodes are concurrently executed on CPU or GPU.

It is truly unfair to run same execution plan tree on CPU and GPU separately and compare the

execution times with respect to each other. Because they both might require different plans to

execute optimally. Therefore SEC and SEG should not been compared with each other. The

physical execution plan tree for modified TPC-H queries are shown in Figure 4.5, Figure 4.6

and Figure 4.7 respectively. The performance of modified TPC-H queries are shown in Table

4.8, 4.9 and 4.10.
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Figure 4.5: TPC-H Query 5 execution plan tree for CPU and GPU

Time(ms)

MonetDB 830

SEC 3200

SEG 1581

SEH Not Beneficial

CEH Not Beneficial

Table 4.8: Performance of TPC-H Q5 on CPU(6 threads), GPU(256 threads, 90 thread blocks)
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Figure 4.6: TPC-H Query 10 execution plan tree for CPU and GPU

Time(ms)

MonetDB 580

SEC 750

SEG 720

SEH Not Beneficial

CEH Not Beneficial

Table 4.9: Performance of TPC-H Q10 on CPU(6 threads), GPU(1024 threads, 16 thread

blocks)
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Figure 4.7: TPC-H Query 17 execution plan for CPU and GPU

Time(s)

MonetDB 11.5

SEC 13

SEG 21

SEH 8

CEH 6

Table 4.10: Performance of TPC-H Q17 on CPU(6 threads), GPU(1024 threads, 30 thread

blocks)

Observations:

• SEH & CEH of TPC-H 5, TPC-H 10 is not beneficial because GPU is performing either

better or close to CPU on all the operator nodes of their respective tree.
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• In SEH of TPC-H 17: Hash join in Streamg was outsourced to CPU as this join was

taking 15s to execute on GPU. All the other nodes were executed on the GPU.

• In CEH of TPC-H 17: when the hash join of Streamg was outsourced to CPU then GPU

has kernels to execute on Streamb. Therefore CEH has less execution time than SEH.

• The execution time of SEC is similar to MonetDB execution time proves that the choice

of execution plan tree is not too bad for TPC-H 10 and TPC-H 17.
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Chapter 5

Conclusion and Future work

5.1 Conclusions

1. We propose the algorithm to cut down the tree into set of streams which can execute

concurrently on the GPU.

2. We analyse the scheduler of Tesla k40m GPU and conclude that the order in which stream

are activated has an effect of overall execution of the plan tree.

3. With the help of multiple streams, we were able to execute the operators on the GPU

concurrently with CPU which reduced the overall execution time of the TPC-H query 17.

5.2 Future work

1. The assignment of the operator to the processing unit used in CEH is greedy algorithm.

The greedy rule is not optimal for CEH. Therefore it is still an open problem to design

an algorithm which do optimal assignment of the operators on the CPU or GPU.

2. Designing an algorithm which assigns optimal number of thread block to each node of

the plan tree so that total execution time of the plan tree on CEG is reduced. The

assignment should be such that both the child nodes of parent node should complete in

same time because their is no benefit for one child node to finish significantly fast and

other significantly slow because parent node had to wait for both of its child node.

3. Hash join in CUDA implementation is not resource configurable i.e number of thread block

launched by the kernels of hash join is dependent upon the data size which is typically

large enough to make number of thread blocks launched much greater than max residency
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thread block of that kernel. Therefore two hash joins sent on different streams will not

overlap each others executions. Hash Join should be made resource configurable.

4. Join algorithm such as INLJ, NLJ, SMJ are yet to be integrated into system and made

to be resource configurable.
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