
Integrating Multilingual Database Operators in

PostgreSQL

A project report submitted in partial fulfilment of the

requirements for the Degree of

Master of Engineering

in

Internet Science and Engineering

by

Rupesh Bajaj

Department of Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012

JULY 2007

Dedicated

To

My Parents,

Bhaiya and Bhabhi

Acknowledgements

I sincerely express my gratitude to my advisor Prof. Jayant R. Haritsa for his guidance

and enduring support. His constant association and critical appraisal has helped a great

deal in the completion of this project in all its aspects.

I am also indebted to all my DSL labmates Tarun, Shruthi, Pooja, Sharat for providing

a lively and pleasant company. My friends made my stay at IISc quite memorable. I also

like to thank Sudipta Chattopadhyay, Ashutosh Bhatia, Ravikant Chaudhary, Sandeep

Tandekar, Mitesh Jat, Vijay Prakesh, Mahesh Sonal, Nikesh Srivastava and Vikas Sharma

for their moral support. There are several people in CSA and IISc who deserve acknowl-

edgment for their help in successful completion of this work. I thank all the faculty

and staff members of the department for their support and help. I cannot express my

gratitude in words to my parents, Bhaiya and Bhabi for their unconditional support and

encouragement.

i

Abstract

With the increasing integration of global economy and proliferation of languages other

than English into information systems, capability to store and manage data in multiple

languages simultaneously is of vital importance. The problem of Multilingual database ta-

bles and cross-lingual query operators has been previously dealt with and two cross-lingual

operators MLLexEqual (phonemic name matching) and MLSemEqual (semantic con-

cept matching) were introduced. We introduce MLLike (phonemic regular expression

matching) operator.

In this report, we focus on efficient implementation of MLLike, MLLexEqual and MLSe-

mEqual operators, investigating issues related to implementation of these operators inside

relational engines. Specifically, we implemented these operators inside the PostgreSQL

database system. Currently, we have implemented these operators for Hindi and English

languages, but our approach can be extended to support any language. This is the first

core implementation of these operators inside a database engine.

Also, we investigate Slim tree and DF tree Index as a method towards optimization

of the MLLexEqual operator and address issues related to adapting it to large scale se-

lectivity. We investigated Hopi Index to optimize the MLSemEqual operator. We have

evaluated this indexes for MLLexEqual and MLSemEqual operators.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Introduction . 1

2 The Multilingual Operator 4
2.1 The MLLike Operator . 4

2.1.1 MLLike Definition . 4
2.1.2 MLLike syntax . 5

2.2 The MLLexEqual Operator . 5
2.2.1 MLLexEqual Definition . 5
2.2.2 MLLexEqual Syntax . 7

2.3 The MLSemEqual Operator . 7
2.3.1 MLSemEqual Definition . 7
2.3.2 MLSemEqualall syntax . 8
2.3.3 MLSemEqual syntax . 9

3 Design and Implementation of MLPostgreSQL 10
3.1 Design and Implementation of MLPostgreSQL 10

3.1.1 Database Engine . 10
3.1.2 Implementation choices . 11

4 MLLike Operator in PostgreSQL 13
4.1 MLLike Operator in PostgreSQL . 13

4.1.1 Logical Design . 13

5 MLLexEqual Operator in PostgreSQL 15
5.1 MLLexEqual Operator in PostgreSQL . 15

5.1.1 Logical Design . 15
5.1.2 GiST . 20
5.1.3 Index . 20

iii

Contents iv

6 MLSemEqual Operator 23
6.1 MLSemEqual Operator . 23

6.1.1 MLSemEqualall Operator . 23
6.1.2 MLSemEqual Operator . 28

7 Experimental Result 30
7.1 Experimental Result . 30

7.1.1 Mulitilingual column creation experiment 30
7.1.2 MLLike experiments . 31
7.1.3 MLLexEqual experiments . 32
7.1.4 MLSemEqual experiments . 35

8 Conclusion 40
8.1 Conclusion . 40

Bibliography 40

List of Figures

1.1 Multilingual Books.com . 2

2.1 Multilingual Like Query and Result Set . 5
2.2 SQL:1999 Compliant Multilingual Names Query and Result Set 6
2.3 A Multilingual Name Query . 7
2.4 Multilingual Semantic Selection . 8

3.1 Flow of Query through PostgreSQL . 11
3.2 Books and EktAb relations . 12

4.1 þEt!p relation . 13

7.1 Phoneme creation time . 31
7.2 Performance of MLLike query for the constant 32
7.3 Performance of MLLike query join . 33
7.4 Index creation time for the phoneme string 33
7.5 Performance of MLLexEqual query for the constant 34
7.6 Performance of MLLexEqual query for the join 35
7.7 Semantic equal words of ’science’ . 36
7.8 Performance of MLSemEqualall query for the constant 37
7.9 Plan diagram for MLSemEqualall query rewritten using recursion 38
7.10 Plan diagram for MLSemEqualall query rewritten using hopi index 38
7.11 Performance of MLSemEqual query for the constant 39

v

Chapter 1

Introduction

1.1 Introduction

The recent times have seen a huge proliferation of internet and similar other communi-

cation systems with ever greater interoperability amongst themselves. At the same time,

hardware and carrier costs have come down drastically, making them available to more

and more people across the globe. Consequently, today’s information systems are dealing

with a large amount of data which are in languages other than English. Currently, mul-

tilingual data is stored in isolation with one another as different datasets and are used in

isolation to one another. Cross-lingual datasets are very rare owing to unavailability of

operators that can deal with them in some meaningful manner. This is despite the fact

that there are several cross-lingual queries that users might wish to ask. For example,

there are many e-governance and e-commerce portals or search engines where data may be

available in various languages. One might wish to query certain kind of information over

all the languages. Currently, this is not possible in most information systems. Consider

a hypothetical e-commerce application, Books.com, that sells books across the globe; the

MLBooks table storing data in multiple languages or a logical view assembled from data

source of several databases, shown in Figure 1.1, can be a possible schema for viewing

data about all the books that Books.com has in its inventory.

1

Chapter 1. Introduction 2

Figure 1.1: Multilingual Books.com

In such an environment, a user may wish to ask many queries, some of which may be of

the type given below:

1. A user might wish to find out all the books written by author whose name starts

with ’n’ in a particular set of languages (possibly all).

2. A user may want to find out all the books written by a specific author in a particular

set of languages.

3. A user might wish to find out all the ’gEZt’ books that are available in a certain

set of languages.

These requirements for cross-lingual queries have been addressed through the three

operators: MLLike, MLLexEqual [[2]], MLSemEqual [[3]]. For the first query, the ML-

Like operator is used. This operator takes as input, a regular expression in one language,

for example ’n%’, and returns all the phonemically close matches in user specified set of

languages. For the second type of query MLLexEqual operator is used. This operator

takes as input, a name in one language (’n�hz’in Hindi, for example), and returns all the

phonemically close names in a user specified set of languages. The third type of query

presents a different type of problem. Here, one has to find out semantic similarity be-

tween words. For this purpose, MLSemEqual operator is used. It finds out the words

Chapter 1. Introduction 3

belonging to different languages that are semantically related to each other. In order to

do this, it uses available ontology like WordNet [[14]].

Our word is different from Kumaran’s work [[1]] as in their work they have made the

assumtion that whole of wordnet can be store in the main memory. Also their MTree-index

has write-ahead logging error. Whereas in our work their is no such assumption.

Chapter 2

The Multilingual Operator

2.1 The MLLike Operator

2.1.1 MLLike Definition

The current SQL LIKE operator is used to find all the strings which satisfy a given regular

expression. For example in order to find all the Author names that begin with ’n’, the

SQL query will be:

Select *

from MLBooks

where Author like ’ n%’

This query will return only those tuples whose Author names starts with ’n’ in Hindi.

Despite the fact that MLBooks also contains the books whose Author name starts with

’N’ in English. Our new MLLike operator can be used for such queries. MLLike operator

provides the phonemic regular expression matching in user specified set of languages. A

query using MLLike and the consequent result is given in Figure 2.1. If the user has

knowledge of all the target languages, such a query can be written using the current SQL

LIKE operator. This can be done for the query with constant regular expression. But a

join between two tables is not possible without phoneme regular expression matching.

4

Chapter 2. The Multilingual Operator 5

Figure 2.1: Multilingual Like Query and Result Set

2.1.2 MLLike syntax

The syntax for MLLike operator is:

a expr [InLanguages {L1, L2,}]
MLLike

c expr [InLanguages {L1, L2,}]
[With escape (’esc_char’)]

where a expr can be any column name, c expr can be any column name or any regular

expression. The first InLanguages provides the set of languages in which the left hand

column value is expected. The second InLanguages provides the set of languages in which

the right hand constant or column value is expected. The esc char provides the character

to be used as escape character in the regular expression.

2.2 The MLLexEqual Operator

2.2.1 MLLexEqual Definition

The MLLexEqual operator provides a phoneme matching functionality that is used in

cases where one has to determine if two words are phonemically equivalent. For example,

let us take the example of Books.com. Suppose, a user wants to find out all the books

whose Author is phonemically equivalent to ’n�hz’ in English and Hindi. In current

Chapter 2. The Multilingual Operator 6

databases you have to give a query as given in Figure 2.2.

Figure 2.2: SQL:1999 Compliant Multilingual Names Query and Result Set

Such a query specification that requires the author’s name in several languages is un-

desirable, due to requirement of linguistic expertise of the user and the availability of

special lexical resources in several languages for the query input. For the query involving

a constant, user can specify the query to the current database engine. But for the join

(of say EktAb and Books relations explained latter) user can’t write the query in current

database systems. If MLLexEqual operator is used for the above query, it will return

all books which fuzzily match with Nehru in the given language set, available in catalog.

A query using MLLexEqual and the consequent result is given in Figure 2.3. Note that

the tuples returned by the query may not be same as above query. Quality of answer

depends on the threshold parameter and text-to-phoneme[TTP] convertor.

MLLexEqual join operator is defined as follows: MLLexEqual takes an input name in

one language and returns all records that have the same name in all or in a user-specified

set of languages. The input query name may be specified in the most comfortable lan-

guage for the user. The threshold parameter specified in the query determines the quality

of matches.

Chapter 2. The Multilingual Operator 7

Figure 2.3: A Multilingual Name Query

2.2.2 MLLexEqual Syntax

The syntax for MLLexEqual operator is:

a expr [InLanguages {L1, L2,}]
MLLexEqual

c expr [InLanguages {L1, L2,}]
Withthreshold threshold_value

where a expr can be any column name and c expr can be any column name or any

constant. The first InLanguages provides the set of languages in which the left hand

column value is expected. The second InLanguages provides the set of languages in which

the right hand constant or column value is expected. The constant threshold value is

any non-negative float value which provides the threshold value for fuzzy matching. The

threshold value is multiplied by the length of smaller of two strings to get the actual

threshold value.

2.3 The MLSemEqual Operator

2.3.1 MLSemEqual Definition

The MLSemEqual is an ontology matching functionality that is used in cases where one

has to determine if two words are ontologically equivalent. For example, let us take the

Chapter 2. The Multilingual Operator 8

example of Books.com. Suppose a user wants to find out all the books whose Category

is ontologically equivalent to ’gEZt’ in a set of languages. In today’s databases if you

give a query with Category = ’gEZt’ selection condition, only those books whose cat-

egory is ’gEZt’ in Hindi will be returned despite the fact that the catalog also contains

gEZt books in Hindi, English, and other ontologically related books in these languages.

MLSemEqual operator will provide all the books whose category is ontologically related

to ’gEZt’ in user specified set of languages. A query using MLSemEqual and the con-

sequent result is given in Figure 2.4.

Figure 2.4: Multilingual Semantic Selection

In order to determine the ontological equivalence of word-forms across languages in

MLSemEqual operator, WordNet [[14]] is used. The basic idea is to use the WordNet

to find out the intra-language ontological equivalence to match words. We have given two

subclasses of MLSemEqual: MLSemEqualall and MLSemEqual. MLSemEqualall gives

the ontologically related words (sub-tree under the given word) whereas the MLSemE-

qual gives the ontologically equivalent words(Inter languages index).

2.3.2 MLSemEqualall syntax

The syntax for MLSemEqualall Operator is:

a expr InLanguages {L1, L2,}
MLSemEqualall

Chapter 2. The Multilingual Operator 9

c expr [InLanguages {L1, L2,}]

where a expr can be any column name and c expr can be any column name or any

constant. The first InLanguages provides the set of languages in which the left hand

column value is expected. The second InLanguages provides the set of languages in which

the right hand constant or column value is expected.

2.3.3 MLSemEqual syntax

The syntax for MLSemEqual operator is:

a expr InLanguages {L1, L2,}
MLSemEqual

c expr [InLanguages {L1, L2,}]

Explaination of syntax is same as above.

Chapter 3

Design and Implementation of

MLPostgreSQL

3.1 Design and Implementation of MLPostgreSQL

3.1.1 Database Engine

As a platform for implementing the multilingual operators (MLLike, MLLexEqual, MLSe-

mEqual) PostgreSQL is chosen. PostgreSQL is an Object Relational Database

Management System. It is an open source database engine. It comes with all the

advanced features of a contemporary database system. It has a full fledged optimizer,

rewriter, stored procedures etc. It supports complex queries, foreign keys, triggers, views,

transactional integrity etc. Also PostgreSQL [[13]] can be extended by users in many

ways, for example adding new data types, functions, operators, aggregate functions, in-

dex methods, procedural languages etc. Its source code is released under a flexible BSD

type license and is available for modification. It was a natural choice because all the issues

related to multilingual operators implementation will be encountered while implementing

it in PostgreSQL. This also means that all the possible avenues of implementation will be

available and a complete and comprehensive implementation can be worked out. The path

for the query in PostgreSQL database engine is shown in Figure 3.1. For implementation

10

Chapter 3. Design and Implementation of MLPostgreSQL 11

Figure 3.1: Flow of Query through PostgreSQL

of multilingual operators, mainly parser, rewritter, planner, executer is modified.

3.1.2 Implementation choices

In PostgreSQL we have the following choices to implement these operators.

1. Outside-the-server-implementation: This is the quick way to add functionality to

Postgres. But the new function will not be executed inside the server address space.

Thus Postgres is not aware of new operators.

2. Inside-the-server-implementation: In this the new function will be executed inside

the server address space. But in this case also, the optimizer is not aware of the

operator.

3. Core implementation: In this implementation optimizer is aware of the new function

added.

Core implementation is chosen to implement the MLLexEqual, MLSemEqual and MLLike

operators inside the PostgreSQL database engine because this allows optimizer to be aware

Chapter 3. Design and Implementation of MLPostgreSQL 12

of new operators. Thus optimizer can optimize the query involving these operators. This

allows the operators to execute inside the server address space.

As an example to see how the operators work consider the following relations: Books(Title

varchar, Author varchar, Category varchar) consists of English tuples. EktAb (fFqk var-

char, l�Kk varchar, vg varchar) consists of Hindi tuples as shown in Figure 3.2.

Figure 3.2: Books and EktAb relations

Chapter 4

MLLike Operator in PostgreSQL

4.1 MLLike Operator in PostgreSQL

MLLike operator is used for phonemic regular expression matching in user specified lan-

guages.

4.1.1 Logical Design

Consider the relation þEt!p (EnyEmt-&y\jk varchar), which has the regular expression

in English and Hindi as shown in Figure 4.1. In order to do MLLike-Join of this relation

with Books relation, following query is given:

Figure 4.1: þEt!p relation

13

Chapter 4. MLLike Operator in PostgreSQL 14

Select

Title, Author, Category,

from

Books, þEt!p

where

Books.Author

InLanguages {English, Hindi}
MLLike

þEt!p. EnyEmt- &y\jk

InLanguages {English, Hindi}

There is only one choice to execute this query. Do the nested loop join of Books and

þEt!p relation. For each tuple of Books check whether it matches the regular expression

in phonemic space. Note that regular expression is first converted into phonemic space.

So it may happen that a regualar expression cannot be converted into phonemic space.

With todays database engine, we do not know any way to create the index for LIKE or

MLLIKE operator.

Chapter 5

MLLexEqual Operator in

PostgreSQL

5.1 MLLexEqual Operator in PostgreSQL

5.1.1 Logical Design

For the query involving MLLexEqual operator, the column involved in MLLexEqual join

has to be first converted into the phoneme space. For example, for the query like

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

Author InLanguages {English, Hindi}
MLLexEqual

l�Kk InLanguages {English, Hindi}
Withthreshold 0.5

The Author column and l�Kk column has to be converted into its phonemic equiv-

alents. This can be done in the following ways:-

15

Chapter 5. MLLexEqual Operator in PostgreSQL 16

Global Dictionary approach

Maintain one relation say Phoneme Equl (name varchar, phoneme Equivalent varchar)

with name as the primary key. This relation contains all the words and their equivalent

phoneme strings. When the user gives the above query it is equivalently converted into:

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb, phoneme Equl as A,

phoneme Equl as B

where

A.phoneme Equivalent

InLanguages{English, Hindi}
MLLexEqual

B.phoneme Equivalent

InLanguages{English, Hindi}
Withthreshold 0.5

and Author = A.name

and l�Kk = B.name

In this approach phoneme equivalent for each column is not required to be maintained

explicitly. It saves a lot of space. But the time taken for the query is almost three-fold as

the number of joins are increased from 1 to 3. In general if the query has n MLLexEqual

joins, then the converted query will have 3n number of joins. At the cost of running time

one can perform better in space dimension.

Local Column approach

For each column involved in the MLLexEqual join maintain its phoneme equivalent col-

umn in the table itself. Thus when the first time user gives the query, existence of

phoneme column is checked for the column involved in the query. If it does not exist,

Chapter 5. MLLexEqual Operator in PostgreSQL 17

phoneme column is created first and populated with their phoneme strings. For example,

Books.phoneme Author column can be created for the Author column of Books table.

Now user query can be modified as:

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

Books.phoneme Author

InLanguages{English, Hindi}
MLLexEqual

EktAb.phoneme l�Kk

InLanguages{English, Hindi}
Withthreshold 0.5

Thus whenever the user inserts or updates the tuples in the relation, corresponding

value in the phoneme column has to be updated. This is achieved with the help of a

trigger. The drawback of this approach is that phoneme equivalent has to be generated

for each word when it is inserted or modified even if phoneme string for this word has

been generated earlier. This approach compromises space but performs better in time

dimension.

Hybrid approach

This approach is a combination of the first two approaches. For each column involved

in the MLLexEqual join its phoneme equivalent column is maintained in the table itself.

Thus when the first time user gives the MLLexEqual query, existence of the phoneme col-

umn is checked for the column involved in the query. In this approach Phoneme Equl(name

varchar, phoneme Equivalent) table with name as the primary key is also maintained. If

the phoneme column does not exist, phoneme column is created first and populated with

Chapter 5. MLLexEqual Operator in PostgreSQL 18

their phoneme strings by obtaining them from the Phoneme Equl relation. Thus for

the same word, phoneme equivalent is not generated each time. If the phoneme equiva-

lent of some word does not exist in the Phoneme Equl relation, phoneme equivalent is

created first, inserted into the Phoneme Equl relation and the phoneme column of the

table. Now user query can be modified as in Local approach discussed earlier.

This approach does not require any extra join as compared to first approach. When-

ever the user inserts or modifies the tuples in the relation, corresponding values in the

phoneme column has to be updated. This is achieved with the help of triggers. This is

done by obtaining the new phoneme string of the word from the Phoneme Equl relation

if it exists. If it does not exist in the Phoneme Equl relation, its phoneme equivalent is

created and inserted into the Phoneme Equl relation and used. Thus it does not require

generating the phoneme for the same word again and again as in second approach. In

this approach space required is more than the second approach but the time required for

generating the phoneme equivalent of the word is saved. This approach compromises the

space but outperforms in terms of running time as shown by experimental results.

For the MLLexEqual operator implementation, third strategy is chosen because of the

reasons given above. In this implementation in order to give a MLLexEqual query, user

has to create the phoneme column first. For that a new SQL create statement is added

whose syntax is:

create MLColumn on

<Tablename>(’<columnname>’)

Here columnname is the name of column for which phoneme column is to be created.

For example to create the ML column for column Author of relation Books user has to

give the following MLColumn creation command.

create MLColumn on

Books(’Author’)

Chapter 5. MLLexEqual Operator in PostgreSQL 19

When the user gives the MLColumn creation query, first verify the table and column

for existence. If they exist, TTP(Text-to-phoneme) converter is used to generate the

phoneme. TTP obtained from Dhvani software [[17]] is integrated inside the Postgres

excuter component. So there is no extra overhead to call the TTP function.

Separate SQL statement for the phoneme column creation is provided so that it does

not affect the performance of MLLexEqual (or MLLike). Because the MLLexEqual (or

MLLike) query does not create the phoneme column. If MLLexEqual (or MLLike) query

creates the phoneme column then due to column creation it will slow down the perfor-

mance of first MLLexEqual (or MLLike) query. Due to presence of phoneme column,

usual inserts and updates cannot be performed by the user as the phoneme string cannot

be supplied. The position of phoneme column in the table is hidden from the user, so

that usual insers/updates is not effected.

In order to solve this problem, there is a flag in PostgreSQL ’attisdropped’. If this

flag for a column is set to true Postgres assumes that column is logically dropped by the

user. When the phoneme column is created, ’attisdropped’ is set to true so that phoneme

column is logically dropped. While performing normal inserts/updates, user need not

worry about the phoneme column. Phoneme column value is updated by running a trigger

on inserts/updates. When user gives the MLLexEqual (or MLLike) query, ’attisdropped’

flag is set to false so that Postgres knows that phoneme column logically exists. Once the

MLLexEqual (or MLLike) query completes phoneme column is logically dropped again.

But when the user gives the clusterdb or alter table alter column type SQL

statement, Postgres physically removes all the logically dropped columns. At that point

the phoneme column will also be removed. To solve this problem, while executing the

clusterdb or alter table alter column type command, the column to be removed is

checked to see if it is the phoneme column. If it is phoneme column, it is not removed

physically.

Chapter 5. MLLexEqual Operator in PostgreSQL 20

5.1.2 GiST

GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method,

that acts as a base template to implement arbitrary indexing schemes. B+-trees, R-trees

and many other indexing schemes can be implemented in GiST. One advantage of GiST is

that it allows the development of custom data types with the appropriate access methods,

by an expert in the domain of the data type, rather than a database expert.

There are seven methods that an index operator class for GiST must provide:

1. consistent:- Given a predicate p on a tree page, and a user query, q, this method

will return false if it is certain that both p and q cannot be true for a given data

item.

2. union:- This method consolidates information in the tree. Given a set of entries,

this function generates a new predicate that is true for all the entries.

3. compress:- Converts the data item into a format suitable for physical storage in an

index page.

4. decompress:- The reverse of the compress method. Converts the index representa-

tion of the data item into a format that can be manipulated by the database.

5. penalty:- Returns a value indicating the ”cost” of inserting the new entry into a

particular branch of the tree. items will be inserted down the path of least penalty

in the tree.

6. picksplit:- When a page split is necessary, this function decides which entries on the

page are to stay on the old page, and which are to move to the new page.

7. same:- Returns true if two entries are identical, false otherwise.

5.1.3 Index

GiST support is provided in PostgreSQL for the implementation of balanced index. Fol-

lowing choices are there:-

Chapter 5. MLLexEqual Operator in PostgreSQL 21

1. M-Tree [[9]]:- M-Tree can be used for range query and k-nearest neighbor query. But

for large dimension the selectivity of M-Tree is very poor.

2. Slim-Tree [[11]]:- Slim-tree uses the slim down algorithm which leads to better tree,

decreasing the absolute fat factor. It also makes use of faster splitting algorithm

based on the minimal spanning tree. It makes use of chooseSubtree algorithm for

the slim-tree (minoccup) which leads to tighter trees, thus have fewer disk pages,

and faster retrievals.

3. DF-Tree [[12]]:- DF-Tree uses the multiple global representatives. With the multiple

global representatives its pruning with respect to number of distance computation

is very high. It is less efficient than the slim-tree in number of disk access.

With the above available choices, only M-tree can be implemented currently with the

current seven-functions API provided by GiST. Slim-tree cannot be implemented because

it requires slim-down algorithm once the tree is built. With current GiST API slim-down

algorithm cannot be run. We are trying to add a ’Slim-Down’ function to GiST API, so

that tree can be slim down once it is built. DF-tree cannot be implemented with current

GiST because it does not support multiple representatives of the node. As noted earlier,

the number of distance computations for the slim-tree is more than the DF-tree, but the

distance computation is cheaper than the cost involved in the disk access. The number

of disk accesses of slim-tree is much smaller than the DF-tree.

Index creation

The SQL statement for creation of multilingual index is:

create MLIndex on

<Tablename>(’<columnname>’)

Index will be created on the phoneme column. For example to create the index on column

l�Kk of relation EktAb user has to give the following MLIndex creation command.

create MLIndex on

EktAb(’ l�Kk’)

Chapter 5. MLLexEqual Operator in PostgreSQL 22

When user gives the MLIndex creation query, the existence of phoneme column is

checked first. If it does not exist, ’First create the phoneme column’ error is thrown. If

it exists ’attisdropped’ flag is set to false for the phoneme column and index on phoneme

column is created.

Chapter 6

MLSemEqual Operator

6.1 MLSemEqual Operator

MLSemEqual operator is available in two sub forms - MLSemEqualall and MLSemEqual.

MLSemEqualall provides the ontology matching for which it descends through whole sub-

tree under the given word in the wordnet. MLSemEqual provides semantic matching with

the use of crosslink tables.

6.1.1 MLSemEqualall Operator

Logical Design

For the query like:

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

Books.category InLanguages {English, Hindi}
MLSemEqualall

EktAb. vg InLanguages {English, Hindi}

23

Chapter 6. MLSemEqual Operator 24

There are two choices to execute this query:

1. Recursive closure:- Do the nested loop join of Books and EktAb table. For each tuple

of Books calculate the closure of EktAb.vg from the English and Hindi wordnets.

Check whether the Books.category is in the closure calculated above. If it is in the

closure output this tuple in the join. This can be done with todays database engines

by rewriting the query like:

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

Books.Category in

((Select child

from english

connect by prior child = parent

start with parent in

(Select equivalent

from crosslink

where word = EktAb. vg

)

)

union

(Select child

from hindi

connect by prior child = parent

start with parent in

(Select equivalent

from crosslink

Chapter 6. MLSemEqual Operator 25

where word = EktAb. vg

)

)

)

In the above query the semantic equivalent of EktAb.vg is calculated in the lan-

guages English and Hindi from the crosslink table. For this following query is used:

Select equivalent

from crosslink

where word = EktAb. vg

Once the semantic equivalent from crosslink table is calculated, the closure of this

equivalent tuple has to be calculated from the wordnet. In order to calculate the

closure from the English wordnet following query is used:

Select child

from english

connect by prior child = parent

start with parent in

(Select equivalent

from crosslink

where word = EktAb. vg

)

In a similar way closure from the Hindi wordnet can be calculated. We then compute

the union of the two closure outputs and check whether Books.Category is in the

closure. If it is in the closure then join these two tuples.

2. Hopi Index [[10]]:- Perform the nested loop join of Books and EktAb table. For

each tuple of Books checks from the hopi index table whether there is path from

EktAb.vg to Books.Category in the given wordnet. If there is path output this

tuple in the join. This can be done with current database engines by rewriting the

query as:

Chapter 6. MLSemEqual Operator 26

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

exists

(Select

english_hopi_lin.element

from

english_hopi_lin,

english_hopi_lout,

crosslink

where

english_hopi_lin.node

= Books.Category

and english_hopi_lin.element

= english_hopi_lout.element

and english_hopi_lout.node

= crosslink.equivalent

and crosslink.word

= EktAb. vg

)

or exits

(Select

hindi_hopi_lin.element

from

hindi_hopi_lin,

hindi_hopi_lout,

crosslink

where

Chapter 6. MLSemEqual Operator 27

hindi_hopi_lin.node

= Books.Category

and hindi_hopi_lin.element

= hindi_hopi_lout.element

and hindi_hopi_lout.node

= crosslink.equivalent

and crosslink.word

= EktAb. vg

)

The inner query checks whether the Books.Category is present in the closure of

EktAb.vg. For example, to check whether the Books.Category is in the closure of

EktAb.vg of English wordnet following query is used:

Select

english_hopi_lin.element

from

english_hopi_lin,

english_hopi_lout,

crosslink

where

english_hopi_lin.node

= Books.Category

and english_hopi_lin.element

= english_hopi_lout.element

and english_hopi_lout.node

= crosslink.equivalent

and crosslink.word

= EktAb. vg

Chapter 6. MLSemEqual Operator 28

Implementation Issue of MLSemEqual Operator

To support the MLSemEqualall query crosslink table, Wordnet table and hopi table has

to be stored for each language. To get the information of crosslink, wordnet and hopi

table, the relation pg multilingual is designed whose format is:

Column Type Modifiers

language name not null

wordnet name not null

hasindex boolean not null

lin name not null

lout name not null

crosslink name not null

When a MLSemEqualall query is encountered, the existence of wordnet and crosslink table

for each corresponding target language is checked. If it is defined, the MLSemEqualall

query is rewritten based on the hasindex value for that language. If the language has hopi

index, query is rewritten in the second way else in the first way.

6.1.2 MLSemEqual Operator

Logical Design

For the query like:

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

Books.Category

InLanguages {English, Hindi}

Chapter 6. MLSemEqual Operator 29

MLSemEqual

EktAb. vg

InLanguages {English, Hindi}

There is only one choice to execute this query. Perform a nested loop join of Books and

EktAb table. For each tuple of Books, calculate the semantic equivalent of EktAb.vg from

the crosslink table. If they are semantically equal, output this tuple in the join. This can

be done with current database engines by rewriting the query as:

Select

Title, Author, Category,

fFqk, l�Kk, vg

from

Books, EktAb

where

exists

(Select

equivalent

from

crosslink

where

word = EktAb. vg

and equivalent = Books.Category

)

In the above query, the inner query is calculating whether the Books.Category is se-

mantically equal to EktAb.vg. If it is, the tuple is output. For the implementation

of MLSemEqual only crosslink table is needed for each language. This information is

retrieved from the pg multilingual table defined earlier.

Chapter 7

Experimental Result

7.1 Experimental Result

Experiment setup: Dual core AMD Opteron processor 2.40GHz having 4GB of main

memory and Linux Redhat Enterprise IV O/S. Postgres version 8.1.2 is used.

In order to check the performance of MLLike, MLLexEqual and MLSemEqual query

following tables are used: MLBooks (Title varchar, Author varchar, Category varchar)

consists of 100 unique tuples. By repeating, we created 10,000 to 100,000 strings of

both English and Hindi data, Books(Title varchar, Author varchar, Category varchar)

with 10,000 to 100,000 strings of English data, EktAb (fFqk varchar, l�Kk varchar, vg

varchar) with 10,000 to 100,000 strings of Hindi data. Hopi index for both the languages

is created.

7.1.1 Mulitilingual column creation experiment

The Text-to-Phoneme[TTP] converter is obtained from Dhvani software. Experiment is

run with both the local approach and hybrid approach. The performance for phoneme

string creation for 10,000 to 100,000 strings is shown in Figure 7.1. The time taken is

roughly linear with respect to the number of strings for both the approaches. But the

time taken with dictionary is less than the time taken without dictionary.

30

Chapter 7. Experimental Result 31

Figure 7.1: Phoneme creation time

7.1.2 MLLike experiments

To check the performance of MLLike involving a constant,following query has been given:

Select

Title, Author, Category

from

MLBooks

where

Author InLanguages {English, Hindi}
MLLike

’ n%’

The performance of all the three data sets is found to be nearly identical shown in

Figure 7.2.

To check the performance of MLLike join the following query is used: self join of

MLBooks having both English and Hindi data is done, and join of Books having English

data with EktAb having Hindi data is performed. The following query is given:

Select

t1.Title, t1.Author, t1.Category,

Chapter 7. Experimental Result 32

Figure 7.2: Performance of MLLike query for the constant

t2.Title, t2.Author, t2.Category

from

MLBooks as t1, MLBooks as t2

where

t1.Author InLanguages {English, Hindi}
MLLike

t2.Author InLanguages {English, Hindi}

The performance of both data sets is almost identical as shown in Figure 7.3.

7.1.3 MLLexEqual experiments

Next, the MTree index for the 10,000 to 100,000 phoneme strings is created. In this case

also, the time taken for the index creation is linear with respect to the number of phoneme

strings as shown in Figure 7.4.

For the MLLexEqual query, the MLBooks relation is used. Following MLLexEqual

query involving a constant is run:

Select

Title, Author, Category

Chapter 7. Experimental Result 33

Figure 7.3: Performance of MLLike query join

Figure 7.4: Index creation time for the phoneme string

Chapter 7. Experimental Result 34

from

MLBooks

where

Author InLanguages {English, Hindi}
MLLexEqual

’Nehru’

Withthreshold 0

Performance of Sequential scan, Index scan and Bitmap index is checked for this query.

All are linear in terms of number of input tuples. The performance of Bitmap index and

Index scan is far better than Sequential scan. Performance of Bitmap index scan and

Index scan is almost equal as shown in Figure 7.5.

Figure 7.5: Performance of MLLexEqual query for the constant

To check the performance of MLLexEqual join MLBooks is used. The following

query is run to check MLLexEqual join performance:

Select

t1.Title, t1.Author, t1.Category,

t2.Title, t2.Author, t2.Category

from

Chapter 7. Experimental Result 35

MLBooks as t1, MLBooks as t2

where

t1.Author InLanguages {English, Hindi}
MLLexEqual

t2.Author InLanguages {English, Hindi}
Withthreshold 0

Performance of nested loop join with sequential scan, nested loop join with index scan

and nested loop join with bitmap index scan is evaluated for this query. The performance

of Bitmap index scan and Index scan is far better than Sequential scan. Performance of

Bitmap index scan and Index scan is almost equal as shown in Figure 7.6.

Figure 7.6: Performance of MLLexEqual query for the join

7.1.4 MLSemEqual experiments

Following query is used to check the performance of MLSemEqualAll involving a constant.

Select

Title, Author, Category

from

MLBooks

Chapter 7. Experimental Result 36

where

Category InLanguages {English, Hindi}
MLSemEqualall

’science’

Similar query is given for the Books and EktAb relations. The performance of mixed

data (English and Hindi) is almost same as Hindi data. The performance of Hindi data

and mixed data is found to be poorer than English data as shown in Figure 7.8. Reason

for this behavior is, for the word ’science’ the number of semantic equal words from the

crosslink table in Hindi is 9 times more as shown in Figure 7.7.

Figure 7.7: Semantic equal words of ’science’

Time required by the recursive query for the MLSemEqualall is also checked, its perfor-

mance is found to be very poor compare to the hopi index query. As the time required to

calculate the closure by recursion is very high as shown in Figure 7.9. The compiled plan

diagram (obtained from Picasso) shows that recursive query is almost 20 times costlier

Chapter 7. Experimental Result 37

Figure 7.8: Performance of MLSemEqualall query for the constant

than the hopi query.

Also, the time required to join the two tables with MLSemEqualall operator is high

even with the hopi index defined. Since the subquery is executed for each row when the

join is performed, which is quite costly, the performance cannot be improved further. This

is shown in Figure 7.10. The compile cost diagram is obtained from Picasso.

Following query is used to check the performance of MLSemEqualAll involving a con-

stant.

Select

Title, Author, Category

from

MLBooks

where

Category InLanguages {English, Hindi}
MLSemEqual

’science’

Similar query is given for the Books and EktAb relations. The performance of all the

three data set are almost the same as shown in Figure 7.11.

Chapter 7. Experimental Result 38

Figure 7.9: Plan diagram for MLSemEqualall query rewritten using recursion

Figure 7.10: Plan diagram for MLSemEqualall query rewritten using hopi index

Chapter 7. Experimental Result 39

Figure 7.11: Performance of MLSemEqual query for the constant

Chapter 8

Conclusion

8.1 Conclusion

In this project, we have done the persistent implementation of MLLexEqual, MLSemE-

qual and MLLike operators. Various logical and design issues for the implementation

of such operators inside the PostgreSQL database engine have been investigated. Core

implementation of these operators is done inside PostgreSQL as it is faster and can be op-

timized by the optimizer. We investigated the impact of index for MLLexEqual operator.

Performance of MLSemEqual has been improved by the addition of hopi index.

40

Bibliography

[1] A. Kumaran, P. K. Chowdary and J. R. Haritsa. On Pushing Multilingual Query

Operators into Relational Engines, ICDE 2006.

[2] A. Kumaran and J. R. Haritsa. MLLexEqual: Supporting Multiscript Matching in

Relational Systems, EDBT 2004.

[3] A. Kumaran and J. R. Haritsa. MLSemEqual: Multilingual Semantic Matching in

Relational Systems, DASFAA 2005.

[4] A. Kumaran. MIRA: Multilingual Information Processing on Relational Architecture,

EDBT 2004.

[5] A. Kumaran and J. R. Haritsa. On the Cost of Multi-Lingualism in Database Systems,

VLDB 2003.

[6] A. Kumaran and J. R. Haritsa. Multilingual Semantic Matching Operator in SQL,

TR-2004-03, DSL/SERC.

[7] A. Kumaran. Multilingual Information Processing on Relational Database Architec-

tures, PhD Thesis, CSA Dec, 2005.

[8] P. Pavan Kumar Chowdary. MLPostgres: Implementing Multilingual Functionalities

inside PostgreSQL Database Engine, M.E. Thesis, CSA June, 2005.

[9] P. Ciaccia, M. Patella and P. Zezula. An Efficient Access Method for Similarity Search

in Metric Space. VLDB 1997

41

BIBLIOGRAPHY 42

[10] E. Cohen, Eran Halperin, Haim Kaplan and Uri Zwick. Reachability and distance

queries via 2-hop labels SODA 2002.

[11] C. Traina, A. Traina, C. Faloutsos and B. Seeger. Fast Indexing and Visualization of

Metric Data Sets Using Slim-Trees, KDE 2002.

[12] C. Traina, A. Traina, R. Filho and C. Faloutsos. How to Improve the Pruning Ability

of Dynamic Metric Access Methods, CIKM 2002.

[13] PostgreSQL Database System.

http://www.postgresql.org

[14] The WordNet.

http://www.cogsci.princeton.edu/wn

[15] www.cfilt.iitb.ac.in/wordnet/webhwn/

[16] http://www.postgresql.org/docs/8.1/static/gist.html

[17] http://www.simputer.org/simputer/downloads/software/dhvani

