
Projection-Compliant Database Generation

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Shadab Ahmed

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2021

Declaration of Originality
I, Shadab Ahmed, with SR No. 04-04-00-10-42-19-1-16671 hereby declare that the material pre-
sented in the thesis titled

Projection-Compliant Database Generation

represents original work carried out by me in the Department of Computer Science and Automa-
tion at Indian Institute of Science during the years 2019-2021.
With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and refer-
enced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: 10th July, 2021 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements are
true to the best of my knowledge, and I have carried out due diligence to ensure the originality of the
report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

© Shadab Ahmed
July, 2021

All rights reserved

DEDICATED TO

the future IISc students.

May they have a good time.

Acknowledgements

I would like to express my gratitute to my advisor Prof. Jayant R. Haritsa for giving me the opportunity
to work on this project. I am grateful for his guidance throughout this project.

I would like to thank Anupam Sanghi for mentoring and helping me every step of the way. His
collaboration has helped this work to reach a good end. I would also like to thank my lab mates for
their help and for making my time in lab fun. I am grateful to Tarun Kumar Patel and Subhodeep Maji
for helping me with the project on numerous occasions.

I would also like to express my gratitude to the Department of Computer Science and Automation
for providing a good and friendly environment for learning. The staff has been very helpful.

I am thankful to my family for their support and their belief in me.
Lastly, I am grateful to my friends. I am grateful for the many life lessons that I have learnt from

them. I am grateful to them for helping me enjoy life outside of academics. I am also thankful to my
friend, Hemanta Makwana, for giving me emotional support that got me through the difficult times.

i

Abstract

A core requirement of database engine testing is the ability to generate synthetic databases that ex-
hibit a desired set of characteristics. Expressing these characteristics through declarative formalisms
has been advocated in contemporary testing frameworks. In particular, specifying operator output
volumes through row-cardinality constraints has received considerable attention. However, thus far,
adherence to these volumetric constraints has been limited to only the Filter and Join operators. A crit-
ical deficiency is the lack of support for the Projection operator, which forms the core of basic SQL
constructs such as Distinct, Union and Group By. The technical challenge here is that cardinality
unions in multi-dimensional space, and not mere summations, need to be captured in the generation
process. Further, dependencies across different data subspaces need to be taken into account.

In this work, we address the above lacuna by presenting PiGen, a dynamic data generator that
incorporates Projection cardinality constraints in its ambit. The design is based on a projection sub-
space division strategy which supports the expression of constraints using optimized linear program-
ming formulations. Further, techniques of symmetric refinement and workload decomposition are
introduced to handle constraints across different projection subspaces. Finally, PiGen supports dy-
namic generation, where data is generated on-demand during query processing, making it amenable
to Big Data environments. A detailed evaluation on TPC-DS-based query workloads demonstrates
that PiGen can accurately and efficiently model Projection outcomes, representing an essential step
forward in customized database generation.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Design Principles 6
2.1 Isolating Projections . 6
2.2 Projection Subspace Division . 7
2.3 Deterministic Instantiation . 8

3 PiGen Pipeline 11
3.1 Workload Decomposition . 12
3.2 LP Formulation . 12
3.3 Data Generation . 13

4 Symmetric Refinement 14
4.1 Refinement Algorithm . 14

5 Projection Subspace Division 17
5.1 Valid Division . 17
5.2 Optimal Division . 20
5.3 Opt-PSD Algorithm . 21

iii

CONTENTS

5.4 Proof of Optimality . 24

6 Constraints Formulation 26
6.1 Explicit Constraints . 27
6.2 Sanity Constraints . 27
6.3 Sufficiency for Data Generation . 28
6.4 Workload Scalability and Robustness . 28

7 Data Generation 30
7.1 Summary Construction . 30
7.2 Tuple Generation . 31

8 Experiments 32
8.1 Accuracy . 33
8.2 Time and Space Overheads . 33
8.3 Workload Decomposition . 34
8.4 Instance-based Decomposition (ID) . 34
8.5 Template-based Decomposition (TD) . 35

9 Related Work 36

10 Conclusions 38

Bibliography 39

iv

List of Figures

1.1 Hydra Data Generation . 3

2.1 Projection Subspace Division . 7
2.2 PiGen Table Summary . 9

3.1 PiGen Algorithm Pipeline . 11

5.1 Partitioning in Projected Space . 19
5.2 Hasse Diagram . 21
5.3 Example Division Graph . 23

7.1 Sample RB in Summary . 31

v

List of Tables

2.1 Notation Table . 10

5.1 No. of CPBs in Opt-PSD . 24

8.1 Distribution of Constraints . 32
8.2 Overheads . 33
8.3 Block Profiles . 33
8.4 Tuple Generation Time . 34
8.5 Workload Decomposition - ID . 35
8.6 Workload Decomposition - TD . 35

vi

Chapter 1

Introduction

Database software vendors often need to generate synthetic databases for a variety of applications [15,
5], including: (a) Testing of database engines and applications, (b) Data masking, (c) Benchmarking,
(d) Creating “what-if” scenarios, and (e) Assessing performance impacts of planned engine upgrades.
The synthetic databases are targeted towards capturing the desired schematic properties (e.g. keys,
referential constraints, functional dependencies, domain constraints), as well as the statistical data
profiles (e.g. value distributions, column correlations, data skew, output volumes) hosted on these
schemas.

Cardinality Constraints
The use of declarative formalisms to express data characteristics has been persuasively advocated
in contemporary testing frameworks [5, 14, 18]. In particular, a cardinality constraint dictates that
the output of a given relational expression over the generated database should feature the specified
number of rows. For SPJ (SELECT-PROJECT-JOIN) formulations, the canonical representation in the
constraint format is:

|πA(σf (T1 ./ T2 .// TN))| = k (1.1)

where f represents the filter predicates applied on the inner join of a group of tables T1, ...TN in
the database; A represents the projection-attribute-set, i.e. the set of attributes on which the projection
is applied; and k is a count representing the output row-cardinality of the relational expression. The
provenance of these constraints could be either from construction of what-if scenarios by the database
vendor, or based on information sourced from a client installation – for instance, Annotated Query
Plans (AQPs) [8].

1

Data Generation using Cardinality Constraints
Generating synthetic data that adheres to a collection of cardinality constraints was first proposed in
the pioneering work of DataSynth [5, 6]. This initial effort was later extended in Hydra [18, 19] to
incorporate dynamism and scale in the generation process. The generic procedure in these frameworks
is as follows: For each table T in the database schema, a corresponding denormalized table T is
constructed, with the schema comprising the non-key attributes from the source table and the tables
to which it is connected through referential constraints. This construction allows replacing the join
expression (restricted to PK-FK joins) in each constraint with a single denormalized table. Next,
the data space of T is partitioned into a set of disjoint filter-blocks1 (FBs), determined by the filter
predicates in the cardinality constraints. Specifically, an FB b represents a collection of data points
that satisfy a particular set of filters. Further, a variable xb is created for each b, representing its row-
cardinality in the synthetic database. Next, a feasibility problem is constructed, where each constraint
is expressed as a linear equation in these variables. The solution of the problem is used to construct
the denormalized table. Finally, from the denormalized tables, the base tables are extracted while
ensuring referential integrity.

As a concrete example of this procedure, consider the following scenario: Example: A table

PURCHASES with non-key columns Qty and Amt has the following three filter constraints:

|(σf1(PURCHASES))| = 500, f1 = (Qty < 20) ∧ (1100 ≤ Amt < 2500)

|(σf2(PURCHASES))| = 1000, f2 = (Qty ≥ 20) ∧ (500 ≤ Amt < 3000)

|(σf3(PURCHASES))| = 3000, f3 = (Qty ≥ 10)

Figure 1.1(a) shows the 2D data space of the Qty and Amt attributes. On this space, the above filter
constraints are represented using regions with colored solid-line boundaries. For partitioning the data
space, Hydra adopts region-partitioning algorithm, which produces FBs such that all the data points
that exclusively satisfy a particular set of filters are put in the same FB. For the above example con-
straints, the algorithm produces the four disjoint FBs: b1, b2, b3, b4, depicted with dashed-line bound-
aries. The corresponding linear program (LP) constructed on these FBs is shown in Figure 1.1(b).
Here, x1, x2, x3, x4 correspond to the count variables for FBs b1, b2, b3, b4, respectively. A possible so-
lution to the LP is: < x1 = 500, x2 = 0, x3 = 1000, x4 = 2000 >. A distinguishing feature in Hydra
is that it produces summarized tables in the output, where a single point per FB is picked and the entire
row-cardinality of the FB is assigned to that point. Therefore, the table summary corresponding to

1The individual sets in a partition are called blocks.

2

Figure 1.1: Hydra Data Generation

the example LP solution is shown as in Figure 1.1(c). The summarized tables, collectively called the
database summary, can be used to dynamically generate tuples on-demand during query execution,
thereby eschewing the need for data materialization.

Incorporating Projection
The above generation process accurately and efficiently satisfies the filter constraints applied on T.
However, a critical limitation is that it lacks support for the projection operator. Projection forms the
core of the DISTINCT, GROUP BY, and UNION SQL constructs, and therefore producing a synthetic
database that is projection-compliant would be of considerable value to database vendors. As a case
in point, a thorough assessment of a new memory manager’s ability to handle hash aggregate/sort
operations is predicated on accurate modeling of projection cardinalities. Consequently, in this work,
we investigate the explicit incorporation of Projection into the data generation framework. In par-
ticular, our focus is on the duplicate-eliminating version where only the distinct rows are retained
in the projected output. (The alternative duplicate-preserving option does not alter the filter output’s
row-cardinality, and is therefore trivially handled by the existing frameworks.)

Projection-inclusive Constraints To represent a projection-inclusive cardinality constraint c for a
table T, we use the quadruple c : 〈f ,A, l,k〉, as a shorthand notation. Here, k represents the row-
cardinality after projecting the filtered table, which is of cardinality l. For instance, the following
constraints could represent the post-projection scenario for the three filters from our earlier example:

c1 : 〈f1, Amt, 500,555〉, c2 : 〈f2, Amt, 1000,333〉, c3 : 〈f3, Qty, 3000,999〉

As a case in point, constraint c1 denotes that applying the f1 predicate on the PURCHASES table
produces 500 rows in the output, which is further reduced to 5 rows after projecting on the Amt

3

column.

Technical Challenges
We now highlight the challenges involved in handling projection-inclusive constraints:

Union Cardinality: While the FBs are mutually disjoint, their projections onto a subspace may over-

lap. Therefore, handling projection constraints requires computing the cardinality of the union

of FBs obtained after projecting onto the subspace spanned by a given projection attribute-set
(PAS).

For instance, leveraging the fact that projection distributes over union [21], we can rewrite
projection constraint c1 in the example as follows, with regard to the FBs in Figure 1.1(a):

|πAmt(b1) ∪ πAmt(b2)| = 5

Here, the union does not translate to the simple summation that sufficed for handling filters.
For instance, consider the two points: u : (Amt = 1500, Qty = 3) and v : (Amt = 1500,
Qty = 16) from the FBs b1 and b2, respectively. The union of projections of u and v along Amt
yields a single point – namely, Amt = 1500.

Inter-Projection Subspace Dependencies: When an FB b is subjected to multiple projections, the
data generation for each projection subspace may be dependent on the others. So, for a pair
of PASs A1 and A2, sourced from constraints c1 and c2, respectively, we have the inclusion
property:

πA1∪A2(b) ⊆ πA1(b)× πA2(b) (1.2)

For instance, considering the example FB b4, Amt = 2700 and Qty = 25 can belong to
πAmt(b4) and πQty(b4), respectively, but (Amt = 2700, Qty = 25) lies outside the boundary of
b4. Moreover, A1 and A2 may be partially intersecting as well. Expressing a general set of pro-
jection constraints as linear constraints, while ensuring the solution is physically constructible,
is often infeasible – this is because the set of constructible solutions does not form a convex
polytope [13].

Our Contributions
We present here PiGen, a data generator that addresses the above challenges and extends the cur-
rent scope of data generation to include projection in its ambit. The key design principles that help
attain the desired objective are: (a) Isolating Projections, (b) Projection Subspace Division, and (c)

4

Deterministic Instantiation – these principles are discussed in detail in Chapter 2. PiGen has been im-
plemented as a substantive extension of the base Hydra platform. Therefore, it generates summarized
tables as its output and the entire pipeline (from constraints processing to summary construction)
is data-scale-free. Further, a detailed evaluation on a workload of constraints, derived from TPC-
DS benchmark, demonstrates that PiGen accurately and efficiently models Projection outcomes. As a
case in point, for a suite of constraints-workloads, comprising over a hundred projection constraints in
total, PiGen generated data that satisfied all these constraints, as well as the attendant filter constraints,
with perfect accuracy. Moreover, the entire summary production pipeline completed in viable time
and space overheads.

Organization The remainder of this report is organized as follows: The key design principles of
PiGen are highlighted in Chapter 2, and an overview of its data generation pipeline is presented in
Chapter 3. Subsequently, the internals of the core components in the pipeline are described in Chap-
ters 4 through 7. The experimental framework and performance results are reported in Chapter 8,
while the prior literature is reviewed in Chapter 9. Finally, our conclusions and future research av-
enues are summarized in Chapter 10.

5

Chapter 2

Design Principles

We present here the three design principles incorporated in PiGen to address the technical challenges
of modeling projection constraints. The PURCHASES table example scenario of the Introduction is
used as the running example to explain their operations.

2.1 Isolating Projections
To circumvent inter-projection subspace dependencies, we first “isolate” the projections. Specifically,
the following set of steps are taken in this process.

A symmetric refinement strategy is adopted that refines an FB into a set of disjoint refined-blocks

(RBs) such that each resultant RB exhibits translation symmetry along each applicable projection
subspace. That is, for each domain point of an RB r along a particular PAS, the projection of r along
the remaining attributes is identical.

For instance, consider FB b4 in Figure 1.1. Clearly, it is asymmetric along the PAS Qty – specifi-
cally, compare the spatial layout in the range 10 ≤ Qty < 20 with that inQty ≥ 20. After refinement,
this block breaks into r4a and r4b as shown in Figure 2.1(a) – it is easy to see that r4a and r4b are sym-
metric. This refinement allows for the values along different projection subspaces to be generated
independently. (The other FBs (b1, b2, b3) happen to be already symmetric, and are shown as r1, r2
and r3, respectively, in Figure 2.1(a)).

The above refinement, however, does not scale when the projections applied on an FB are along
partially overlapping PASs. Therefore, to eliminate such situations, we resort to decomposing the
workload into sub-workloads using a vertex coloring-based strategy. Further, for each such sub-
workload, a summarized table is produced. From a practical perspective, the multiplicity of sum-
maries does not impose a substantive overhead since each summary is very small. However, to max-
imize the number of constraints that can share a common database, the number of sub-workloads

6

required to eliminate all conflicts is minimized.

2.2 Projection Subspace Division
To deal with the cardinality of union, the domain of each PAS is divided into a set of constituent-

projection-blocks (CPBs). This construction ensures that projection constraints can be expressed as
summations over the cardinalities of these CPBs.

For our example scenario, PiGen divides the data subspace associated with the Amt dimension
into 4 CPBs: pAmt1 , pAmt2 , pAmt3 , pAmt4 , and theQty dimension subspace into 6 CPBs: pQty1 , pQty2 , ..., pQty6 ,
as shown in Figure 2.1(a). Each CPB has a semantic meaning associated with it. For example, pAmt1

semantically represents the set of Amt values that are present in both r1 and r2. Further, the CPBs
need not be mutually disjoint, as in the case of pAmt3 andpAmt4 . Finally, Figure 2.1(a) also shows, for
the sample table shown in Figure 2.1(b), with its unique tuples enumerated, the CPB (s) to which each
of these tuples belongs.

Figure 2.1: Projection Subspace Division

The LP solving procedure is constructed using variables representing the row cardinalities of RBs
and CPBs. For instance, if xi represents the cardinality of RB ri, and yAmtj and yQtyk represent the the

7

cardinalities of CPBs pAmtj and pQtyk , respectively, then the constraints for our example are expressed
by the following suite of linear equations:

c1 : x1 + x2 = 500, yAmt1 + yAmt2 + yAmt3 = 5

c2 : x3 = 1000, yAmt4 = 3

c3 : x2 + x3 + x4a + x4b = 3000,

yQty1 + yQty2 + yQty3 + yQty4 + yQty5 + yQty6 = 9

Finally, to ensure database constructibility, additional sanity constraints are added to the LP. For
example, the distinct row-cardinality of the projection of an RB is upper-bounded by the cardinality
of the RB.

2.3 Deterministic Instantiation
Deterministic instantiation of tuples is predicated on well constructed summary. To construct the
summary, the domain of each PAS is divided into a set of intervals and then the CPBs are assigned
these intervals. This gives the summarized table. A sample summary for the PURCHASES table, with
respect to the LP solution:

x1 = 500, x2 = 0, x3 = 1000, x4a = 0, x4b = 2000

yAmt1 = 0, yAmt2 = 5, yAmt3 = 0, yAmt4 = 3, yQty1 = 0

yQty2 = 5, yQty3 = 0, yQty4 = 0, yQty5 = 0, yQty6 = 4

is shown in Figure 2.2 with an additional attribute Y ear to illustrate a multi-dimensional projection.
The summary has a tabulation for each populated RB, comprising of a column for each PAS acting on
the RB. In each of these columns, intervals in the projection subspace corresponding to that column is
maintained along with their distinct counts. Additionally, another column stores intervals for all the
non-projection columns for that RB which contains only intervals but no counts – an example is Y ear
in r3. As a case in point, the first tabulation, corresponding to r1, is interpreted as “generate 500 tuples,
such that there are 5 distinct values ofAmt in the interval [1100,2500), and 20 distinct value pairs
of {Qty, Y ear} of which 12 are from the two-dimensional interval [1,10), [1990,2000), and
the remaining 8 from the two-dimensional interval [1,10), [2010,2020).”

Further, note that the intervals present in a summary may not be continuous. For instance, the
{Amt, Y ear} points in r4b are sourced from two separate intervals: [1,1500) and [3000,3600)
for Amt column. From a generation perspective, however, data can be constructed from either or both
the sub-intervals. Finally, we observe that this summary is significantly different from that produced

8

Figure 2.2: PiGen Table Summary

by Hydra (Figure 1.1 (c)). The key difference lies in that Hydra neither maintains intervals nor distinct
value counts. Specifically, it constructs only one distinct tuple for each FB in the summary, and assigns
the entire cardinality to that single tuple.

This summary is used for deterministic tuple instantiation method, which ensures that despite the
tuples being generated independently for various CPBs across all RBs, the row-cardinalities match
the requirement.

In the following sections, we present the overall PiGen pipeline. and describe the internal details
of its major components. The notations used in this delineation are summarized in Table 2.1 for
quick reference. Also, for ease of presentation, we will assume that the data type of all columns is
continuous numeric, but the extension to other types is straightforward.

9

Table 2.1: Notation Table

Notation Meaning
T (Denormalized) Table
U Set of all attributes in T

c An input constraint 〈f,A, l, k〉, where f is the filter
predicate, l is the filtered table row cardinality, k is
the row cardinality after projection along PAS A

W Input constraints workload
C A compatible constraints workload

PAS Projection Attribute Set
FB Filter Block

CPB Refined Block
PRB Projected Refined Block
RB Constituent Projection Block
b A filter-block (FB)
r A refined-block (RB)
R Set of all RBs
M A relation between C and R (Definition 3.2)
r projected-refined-block (PRB) wrt r and some PAS
RA

Set of all PRBs for a PAS A
p An constituent-projection-block (CPB)
PA Set of all CPBs for a PAS A
LA A relation between PA and RA

(Definition 5.1)
(P∗, L∗) Optimal Projection Subspace Division

V∗ Set of mapping vectors corresponding to (P∗, L∗)
xr LP variable associated with RB r
yp LP variable associated with CPB p
DA Data subspace spanned by attribute-set A

10

Chapter 3

PiGen Pipeline

The end-to-end PiGen pipeline, which extends the Hydra framework to incorporate Projection, is
shown in Figure 3.1. The modules that differ from Hydra are shown in green color.

Figure 3.1: PiGen Algorithm Pipeline

PiGen takes a workload W of projection-inclusive constraints over a single denormalized table
T as input. Let β be the total number of PASs across all the constraints, as indicated in Figure 3.1.
From the constraints, PiGen produces data for T. This is carried out by a sequence of core compo-
nents, namely Workload Decomposition, LP Formulation, and Data Generation modules. Workload
Decomposition splits the input workload into a set of compatible sub-workloads, and the rest of the
pipeline is then executed independently for each of these sub-workloads. Specifically, an LP is first
constructed which expresses the input (compatible) constraints as linear constraints, and the solution
is used by the Data Generation module to produce the tuples. We discuss each of these stages in the
remainder of this section.

11

3.1 Workload Decomposition
The input constraints workload is split into sub-workloads with compatible constraints, since this is
a pre-requisite for the LP formulation downstream in the pipeline. Formally, a sub-workload should
not contain constraints that result in conflicting pairs, where conflict is defined as follows:

Definition 3.1 A pair of constraints (c1 : 〈f1,A1, k1, l1〉, c2 : 〈f2,A2, k2, l2〉) conflict iff:

• their PASs partially intersect, i.e.,

A1 ∩ A2 6= ∅,A1 6= A2, and

• f1 and f2 overlap, i.e., there exists a point t in the domain space of T such that t satisfies f1 and

f2.

Given an original workload W, the set of conflicting pairs CP is computed first. Subsequently,
this module aims to construct the minimum number of sub-workloads W1,W2, ..,Wn such that:

1. W1 ∪W2 ∪ ... ∪Wn = W.

2. No element of CP is present in any Wi.

Minimization of number of sub-workloads is desirable to ensure larger set of constraints can share a
common database. This problem is NP complete (reduction from vertex coloring). Therefore, we
adopt a heuristic based on greedy vertex coloring. The algorithm iterates over the constraints, and in
each iteration, the constraint c with minimum conflicts in CP is picked and assigned to an existing
sub-workload Wi, if doing so does not introduce a conflict. If multiple options are available, then an
assignment that minimizes the skew in the sub-workload sizes is made. On the other hand, if no such
assignment is possible, a new sub-workload is constructed, and initialized with c.

In the worst case, the above algorithm can create one sub-workload per query. However, it is our
experience that in practice, a small number of sub-workloads is usually sufficient. Further, we hasten
to add that even if the worst case materializes, the overheads incurred would be marginal as only a
single small summarized table is stored per sub-workload.

3.2 LP Formulation
For each sub-workload C (where C = Wi, for some i ∈ [n]) derived from the above procedure, FBs
based on the filter predicates are constructed using the Region Partitioning algorithm of [18], as
discussed in Chapter 1. In fact, the algorithm ensures the count of FBs is minimum.

12

The FBs are refined into a set of RBs, to facilitate isolation of projection subspaces. This is done
by the Symmetric Refinement module (details in Chapter 4). It ensures that the all the resultant
RBs are symmetric along each PAS applicable on it. The set of RBs is denoted as R, and is used
for expressing the input constraints in the LP. To explain this process, we first define the following
relation between the sets R and C.

Definition 3.2 An RB r ∈ R is related by relation M to a constraint c ∈ C containing filter predicate

f , iff all the points in r satisfy f . That is,

rMc⇔ σf (r) = r (3.1)

For each RB r ∈ R, its projection on A is shown as r, i.e. r = πA(r) and is referred to as a projected-

refined-block (PRB). Further, for brevity, we overload the same relation M to establish an association
between PRB r and a constraint c. That is, rMc ⇔ rMc. The set of all PRBs for a PAS A is shown
as RA

.
A constraint c ∈ C can be expressed as a union of the RBs and PRBs related to it by M . Specifi-

cally, c : 〈f,A, l, k〉 is expressed as:

∣∣ ⋃
r:rMc

r
∣∣ = l,

∣∣ ⋃
r:rMc

πA(r)
∣∣ = ∣∣ ⋃

r:rMc

r
∣∣ = k (3.2)

As discussed earlier, the constraint to ensure total cardinality l can easily be expressed by replacing
the unions with summations as the RBs are mutually disjoint. However, since PRBs may share data
points, to express the constraint requiring distinct cardinality k of the projection result, the projection
subspace needs to be divided into a set of constituent-projection-blocks (CPBs).

Let DA represent the subspace spanned by PAS A. The objective of Projection Subspace Divi-
sion module (details in Chapter 5) is to partition DA associated with each PAS A that occurs in C.
Specifically, each such subspace DA is divided into a group of CPBs such that the constraints are
expressible as linear equations.

Next, at the Constraints Formulation stage (details in Chapter 6), an LP is constructed using
variables representing the row cardinalities of RBs and CPBs which is solved by the LP solver.

3.3 Data Generation
From the LP solution, a comprehensive table summary is constructed that can be used for on-demand
tuple generation during query processing, thereby eschewing the need for data materialization. Alter-
natively, if the user intends to generate a materialized database instance, that can also be generated
from the summary. The details of this module are discussed in Chapter 7.

13

Chapter 4

Symmetric Refinement

The refinement for each FB b is done independently. Given an FB and its associated PASs, this module
refines b into a group of RBs, such that each RB is symmetric along the input PASs. That is, for each
domain point of an RB r along an applicable PAS, the projection of r along the remaining attributes
is identical. Hence, it follows the concept translation symmetry, and is formally defined as follows:

Definition 4.1 A block r in the data space of a U-dimensional table T is called symmetric along an

attribute-set A iff

D(r) = D(πA(r))×D(πU\A(r))

where D(.) returns the domain of the input block.

Likewise r is symmetric along sets A1,A2, ...,Aα iff

D(r) = D(πA1(r))×D(πA2(r))× ...×D(πAα(r))×D(πU\(A1∪A2∪...∪Aα)(r)) (4.1)

The Cartesian product implies that for a symmetric block, the data can be independently generated for
each of the PAS. Hence, post-refinement, the different projection spaces can be processed indepen-
dently, as shown in Figure 3.1.

4.1 Refinement Algorithm
Let us first understand the refinement procedure for an FB along a single PAS. Here, given a block b,
and a PAS A, the refinement of b along A is carried out as follows:

1. Let I be the subset of all interval-combinations in the domain of A that are present in b. The
interval boundaries along an attribute are computed using the constants that appear in the filter
predicates of the input constraints. For some interval-combination I ∈ I, let bI denote the part
of b whose projection along A is I.

14

2. For each interval combination I ∈ I, the projection of bI along U \A is computed, and denoted
as π(bI).

3. A hashmap H is created with keys as π(bI) and value as I. Hence, the parts of b where the
projection of b along U \ A do not alter with changing values of A are clubbed together into a
single hash entry. This construction provides independence between A and the U\A subspaces.

4. Each entry e in H corresponds to a refined block – the block is constructed by taking the region
stored as key in e for the U \ A attribute-set, and a union of regions stored as value in e for the
A attribute-set.

Interestingly, the above refinement strategy also ensures that the number of resultant blocks is kept to
a minimum. Let the domain of b along A be denoted as DA(b). Further, let SA

b be a relation associated
with the points in DA(b). For a pair of points t1, t2 ∈ DA(b), we say t1SA

b t2 iff the projection t1 and t2
along the rest of the attributes i.e. U \A is identical. It is easy to verify that SA

b forms an equivalence

relation. For an equivalence relation, the quotient set of the relation gives the minimum partition.

Lemma 4.1 The Symmetric Refinement algorithm returns the quotient set of DA(b) by SA
b .

The proof follows from the fact that Symmetric Refinement algorithm uses a hashmap, which
enables grouping of points in DA(b) together such that their projection on U \A are identical. Hence,
for a PAS, the symmetric refinement algorithm produces the quotient set of SA

b , and hence returns the
refinement with minimum number of blocks.

Extension to Multiple PAS
We now move on to the multiple PAS scenario. Let there be α PASs (A1,A2, ...,Aα) applicable on b
across all constraints. This implies that there are α+1 projection subspaces – πA1(b), πA2(b), ..., πAα(b),

and πU\(A1∪A2∪...∪Aα)(b). It is easy to see that the block becomes symmetric when refined along any
α of these α + 1 subspaces. For example, block b4 in Example 1 has two projection subspaces along
the Qty and Amt attributes, and refinement along either of these dimensions ensures symmetry along
both subspaces.

The refinement is done iteratively, where the output of refinement along one subspace is fed into
the next in the sequence. Since any sequence among the chosen α subspaces results in a symmetric
block, there are a total of

(
α+1
α

)
α! ways to do the refinement. The specific choice that we make from

this large set of options is important because it has an impact on the number of variables in the LP,
and hence the computational complexity and scalability of the solution procedure. In particular, the
number of CPBs created depends on the geometry of the resultant PRBs, and usually more overlaps

15

of PRBs along a PAS results in more CPBs. More precisely, if we refine a block along a subspace,
the overlaps in that space remain unaffected, but the overlaps along the remaining subspaces may
increase. Therefore, to minimize this collateral impact, we adopt the following greedy heuristic in
PiGen: The subspace with the maximum FB overlaps with b is chosen as the next subspace to be
refined in the iterative sequence.

Impact of Conflicting Constraints. When partially overlapping PASs, say A1 and A2, are applied
on an RB b, symmetric refinement becomes computationally challenging. This is because A1,A2

have to be made conditionally independent for b, requiring refinement such that each resulting block
is symmetric along A1 and A2 for each domain point in D(A1 ∩ A2). This is easily done by enumer-
ation for small cardinality domains, but does not scale in general. Hence, in PiGen we bypass such
overlapping projection operations by ensuring, as described in Chapter 3.1, that the input workload is
initially itself decomposed into non-conflicting sub-workloads.

16

Chapter 5

Projection Subspace Division

Projection subspace division aims at dividing DA, the data subspace spanned by A, into a collection
PA of CPBs, where each element p ∈ PA is a subset of DA. Further, a relation LA is provided that
connects the elements of PA with elements of RA

. We first define the notion of what constitutes a
valid division, and then go on to presenting an algorithm that provides the (unique) optimal division.

5.1 Valid Division
A valid division is defined as follows:

Definition 5.1 Given C,RA
and M , a division (PA, LA), with respect to a projection data subspace

DA, is called a valid division if it satisfies the following two requirements:

Condition 1. Each PRB r ∈ RA
is expressible as a union of a group of elements from PA, determined

by relation LA, as shown below:

r =
⋃

p:pLAr

p, ∀ r ∈ RA
(5.1)

Condition 2. All elements in PA that are related to a constraint c ∈ C through the composite relation

M ◦ LA = {(p, c)|∃r ∈ RA
: rMc ∧ pLAr}

that is, all elements of the set {p : (p, c) ∈M ◦ LA}, should be mutually disjoint for all c ∈ C.

Condition 1 is needed to associate an PRB with its constituent CPBs. This is required during data
generation in order to populate appropriate RBs based on the cardinalities of CPBs obtained from

17

the LP solution. Condition 2 enforces that each constraint is comprised of disjoint constituent CPBs,
thereby enabling expression of constraints as linear equations.

For ease of presentation, we drop A, which can be assumed implicitly, from the superscript in the
rest of this section.

We now give a bound on the number of CPBs required. Each element p of P maps to a collection
of sets from R using relation L. If there are m elements in R, then p has one of the total 2m − 1

possible mappings.

Lemma 5.1 If a pair of CPBs in P, p1 and p2, map to identical sets in R, they can be combined into

a single element p1 ∪ p2, without violating either condition.

Proof: We are given that p1 and p2 ∈ P are such that p1Lr ⇔ p2Lr for s ∈ S. We need to prove
that replacing p1 and p2 with p1,2 = p1 ∪ p2 in P does not violate any of the two conditions.

• Condition 1: It is required that each r ∈ R is expressible as union of related elements of P
through L.

If (p1, r) /∈ L, then (p2, r) /∈ L (and vice versa). Hence, the expression for r remains unaltered.

If (p1, r) ∈ L, then (p2, r) ∈ L (and vice versa). Let ρ = {p ∈ P \ {p1, p2} : pLr}. Then,
r = p1 ∪ p2

⋃
p∈ρ p. After replacing p1 and p2 with p1,2, the expression would become r =

p1,2
⋃
p∈ρ p.

• Condition 2: Let c be any c ∈ C such that (p1, c) ∈ M ◦ LA (and (p2, c) ∈ M ◦ LA). It is
easy to see that (from Condition 2) p1 will be disjoint with all the other elements of P that are
related to c through M ◦ LA. That is,

p1 ∩ p′ = ∅,∀p′ ∈ P \ {p1} : (p, c) ∈M ◦ LA

Likewise, p2 will also be disjoint with all the other elements of P that are related to c. Therefore,
on replacing p1 and p2 with their union p1,2, p1,2 will continue to remain disjoint with all the
other elements of P that are related to c.

2

From Lemma 5.1, we know that at most one CPB is needed for each mapping. Therefore, 2m − 1

is the upper bound on the number of CPBs required for an R of length m.
From this observation, let us first look at an extreme construction of (P, L) with |P| = 2m − 1,

where there is a single element p ∈ P for each possible mapping.

18

Powerset Division
Consider a set P having 2m − 1 elements with a mapping relation L such that each element p in P
maps to one of the non-empty subsets of R. Further, p’s content is defined as follows:

p =
⋂

r:(p,r)∈L

r \
⋃

r′:(p,r′)/∈L

r′ (5.2)

That is, p includes the data points that are present in all the PRBs that are related to p and absent from
each of the remaining PRBs.

P satisfies the two conditions for valid division. This is because:

1. Each element r ∈ R can be expressed as a union of a subset of elements in P, as shown below:

r =
⋃
p:pLr

p

2. All the elements in P are mutually disjoint.

Consider the projection subspace of Amt in our running example. RAmt
= {r1, r2, r3}. Since there

are three PRBs, seven possible mappings exist. Figure 5.1 illustrates these seven mappings. Powerset
Division (Pow-PSD) creates seven CPBs, one CPB corresponding to each mapping. Hence, the seven
resulting CPBs in PAmt are as follows:

r1 \ (r2 ∪ r3), (r1 ∩ r2) \ r3, (r1 ∩ r3) \ r2, r1 ∩ r2 ∩ r3,

r2 \ (r1 ∪ r3), r2 ∩ r3 \ r1, r3 \ (r1 ∪ r2)

Figure 5.1: Partitioning in Projected Space

19

5.2 Optimal Division
The number of CPBs in P determine the number of variables in the LP. Therefore, reducing the size of
P helps in reducing the complexity of LP, thereby providing workload scalability and computational
efficiency. Hence, we define an optimal division as a valid division that has the minimum number of
CPBs.

Definition 5.2 A valid division (P, L) is called an optimal division iff there does not exist any other

valid division (P′, L′) such that |P′| < |P|. We represent the optimal division by (P∗, L∗).

We now shift our focus towards identifying the optimal division. As a first step, let us define some
general characteristics of the set P and the corresponding relation L.

If a CPB p is related to a PRB r, then p is a subset of r. That is,

pLr =⇒ p ⊆ r (5.3)

Alternatively, a second possibility is of disjointedness. Let p1, p2 be such that (p1, c), (p2, c) ∈
M ◦ L for some c ∈ C. Further, let R(p1),R(p2) represent the set of PRBs that are related to p1 and
p2, respectively, through L. Using Condition 2 and Equation 5.3, we can say that

p1 ∩ r = ∅, where r ∈ R(p2) \ R(p1)

p2 ∩ r = ∅, where r ∈ R(p1) \ R(p2) (5.4)

Therefore, CPBs may have a disjoint relation with a PRB.
Finally, a third possibility is when a CPB does not have a relation with a PRB, which allows room

for constructing CPBs that overlap.
Our division algorithm distinguishes these three possibilities using a vector vp corresponding to

each CPB p in P. The vector is of length m, where each element is associated with an element of R.
Further, the element associated with r ∈ R is denoted by vp(r). Specifically, element vp(r) is set to 1
iff pLr. Using Equation 5.4, the elements in vp corresponding to the sets R(p′) \ R(p) for all p′ such
that (p, c), (p′, c) ∈M ◦ L for some c ∈ C, are represented as 0, denoting the absence of values from
these sets. The remaining elements of vp are set as ‘×’ denoting a don’t care state, i.e. p and r may
or may not have an intersection. Finally, using the vector vp, p can be expressed as:

p =
⋂

r:vp(r)=1

r \
⋃

r′:vp(r′)=0

r′ (5.5)

Let V represent the set of all possible vectors. Further, let Q denote the collection of CPBs, where

20

there is a projection-block q associated with each vector v ∈ V. Therefore, P∗ ⊆ Q. Let the subset
of V corresponding to the elements in P∗ be denoted as V∗. Each position in vector v can have one of
the three possibilities among 0, 1,×, and at least one position needs to mandatorily be 1. Therefore,
Q comprises 3m− 2m elements. Note that Q forms a partial-order with respect to the subset relation,
and can therefore be represented by a Hasse Diagram. As an exemplar, the Hasse Diagram for an
m = 3 case is shown in Figure 5.2 (for simplicity, the elements of V are shown instead of Q).

Figure 5.2: Hasse Diagram

We hasten to add that to compute P∗, it is not necessary to iterate on all the elements of Q.
Instead, the division begins with the top nodes of the Hasse diagram and recursively splits a block
only if required to satisfy the two conditions.

The detailed mechanics of the division algorithm, called Opt-PSD, with pseudocode as shown in
Algorithm 1, are described next.

5.3 Opt-PSD Algorithm
We begin our computation of the projection subspace division by creating a Division Graph (DG). In
this graph, a vertex is created corresponding to each element of R. Then, an edge is added between
vertices corresponding to r1 and r2 if there exists a constraint c such that r1Mc and r2Mc, (i.e.
both the PRBs are related to a common constraint c), and the domains of r1 and r2 intersect. The
resultant graph G is given as input to Algorithm 1, which returns the set of vectors V∗ in the output.
Leveraging the vectors, the contents of the CPBs are computed using Equation 5.5. Then, the L∗

relation is populated with the expression: (p, r) ∈ L∗, if vp(r) = 1, vp ∈ V∗

The rest of the algorithm proceeds as follows:

• We iterate over the vertices of G. In the iteration for a PRB r, a vector is initialized with ‘×’
for all the positions except that corresponding to r, which is set to 1 (Line 3 of Algorithm 1).
These initial vectors represent the top nodes of the Hasse Diagram. They are recursively further
split in the while loop (Line 5), using a running list of vectors called toBeSplit.

21

• In each iteration of the while loop, an element v from toBeSplit is popped and split using a
pivot vertex; the resultant elements are re-inserted in the list. A pivot PRB is distinguished as
one which is included in v and co-occurs in a constraint c with another PRB (target) whose
current assignment in the vector is ×. To compute the pivot vertex in G, the getP ivot function
is used, which selects the pivot based on the following conditions: (a) v(pivot) = 1, and (b)
There exists a PRB r such that there is an edge between the vertices corresponding to pivot and
r. Further, the value for r in the vector v is ×.

• The collection of all PRBs that satisfy condition (b) is denoted as the targets set correspond-
ing to pivot, and is returned by the getP ivot function. Now, v is split using the Split func-
tion, which computes a powerset enumeration of the vector positions corresponding to PRBs in
targets. This function also ensures that no redundant elements are added in the result set.

Algorithm 1: Optimal Projection Subspace Division
Input: Division Graph G
Output: Optimal Vectors-set V∗

1 toBeSplit← ∅;
2 visited← ∅;
3 for r in R do
4 visited← visited ∪ r vinit ← {×}m, vinit(r)← 1;
5 toBeSplit← {vinit};
6 while toBeSplit 6= ∅ do
7 v ← toBeSplit.pop();
8 pivot, targets← getP ivot(G, v);
9 if pivot exists then

10 toBeSplit← toBeSplit ∪ Split(v, pivot, targets, visited);
11 else
12 V∗ ← V∗ ∪ {v};

13 return V∗;

The correctness of Opt-PSD algorithm follows from the following:

• it starts from the top nodes of the Hasse diagram and recursively refines them. Therefore, it
continues to cover all the elements of R.

• the PRBs that are related to a common constraint are split by restricted powerset enumeration
ensuring that they are mutually disjoint.

Hence, the algorithm does restricted enumeration depending on vertex’s neighbours, or in other
words it takes into account which PRBs co-appear in a constraint.

22

1 Function Split(v, pivot, targets, visited):
2 splitSet← ∅;
3 for r ∈ targets do
4 if r ∈ visited then
5 vr ← 0;
6 remove r from targets;

7 if targets = ∅ then
8 return v;

9 powerset← generate powerset enumeration of targets;
10 for s ∈ powerset do
11 new v ← v;
12 new vr ← 1,∀r ∈ s;
13 new vr ← 0,∀r ∈ targets \ s;
14 splitSet← splitSet ∪ new vr;

15 return splitSet;

Example Division
Consider the projection subspace of Amt in Example 1. RAmt

= {r1, r2, r3}. Let us see how the
CPBs for projection subspace of Amt are created by Opt-PSD. The input DG for the example is
shown in Figure 5.3.

Figure 5.3: Example Division Graph

Initialization: toBeSplit = ∅,V∗ = ∅

Iteration 1: r1 is picked, vinit = 〈1 × ×〉 is added to toBeSplit, toBeSplit = {〈1 × ×〉}. Af-
ter popping, v = 〈1 × ×〉, getP ivot returns pivot = 1, targets = {2} as vertex 1 is con-
nected to vertex 2. The split function splits v by a restricted powerset enumeration on targets.
{〈11×〉, 〈10×〉} is added to toBeSplit, toBeSplit = {〈11×〉, 〈10×〉}. Both the elements in
toBeSplit are popped one by one and are added to V∗ as they have no pivot. toBeSplit =

∅,V∗ = {〈11×〉, 〈10×〉}.

Iteration 2: r2 is picked and the corresponding v = 〈×1×〉 is added to toBeSplit, toBeSplit =

{〈×1×〉}. After popping, v = 〈×1×〉 which return pivot = 2, targets = {1} as vertex 2 is

23

only connected to vertex 1. On splitting, {〈01×〉, 〈11×〉} are added to toBeSplit. Both the
elements are popped and 〈01×〉 is added to V∗ as it does not have a pivot. 〈11×〉, being already
present in V∗, is not inserted again. toBeSplit = ∅,V∗ = {〈11×〉, 〈10×〉, 〈01×〉}.

Iteration 3: r3 is picked with 〈××1〉 and added to toBeSplit. After popping, v = 〈××1〉, no pivot
is found by getP ivot as vertex 3 is not connected to any other vertex. v is added to V∗.

Finally, V∗ = {〈11×〉, 〈10×〉, 〈01×〉, 〈× × 1〉} (highlighted in Figure 5.2). Using Equation 5.5, it
yielded in 4 CPBs forAmt, P∗ = {p1, p2, p3, p4} (as discussed in Chapter 3) andL∗ = {(p1, r1), (p1, r2), (p2, r1), (p3, r2), (p4, r3)}.

The degree of the DG has a proportional impact on the number of CPBs constructed. To see this
behaviour, the number of CPBs for Opt-PSD for a few general DGs are shown in Table 5.1.

Table 5.1: No. of CPBs in Opt-PSD

Division Graph No. of CPBs
Empty Graph (Km) m

Path Graph (Pm) 1
2
m(m+ 1)

Cycle Graph (Cm) m2 −m+ 1
Star (K1,m−1) 2m−1 +m− 1

Complete Graph (Km) 2m − 1

5.4 Proof of Optimality
We now prove that Opt-PSD produces the optimal division. For a CPB p ∈ P, consider the subset s
of points:

s =
⋂

r:vp(r)=1

r \
⋃

r′:vp(r′)=0,×

r′

Note that with this definition, s ⊆ p and cannot overlap with any p′ ∈ P \ {p}. This restriction leads
to the following lemma:

Lemma 5.2 Given (P, L) returned by Opt-PSD, ∀p ∈ P, there exists a point u ∈ p such that

u /∈ p′,∀p′ ∈ P \ {p}.

We use this observation to prove that Opt-PSD returns an optimal division, and further, that this
optimal division is unique.

Lemma 5.3 Opt-PSD returns the unique optimal division.

24

Proof: We give a brief sketch of the proof here.
Let (P, L) be the division provided by Opt-PSD, and let there be another division (P′, L′) such

that |P′| ≤ P.

=⇒ ∃u ∈ p1, v ∈ p2(6= p1) for some p1, p2 ∈ P, where p1Lr1, p2Lr2,

r1, r2 ∈ R, such that u, v ∈ p′, p′L′r1, p′L′r2 for some p′ ∈ P′.

Case (1) r1 = r2 = r: Since p1Lr and p2Lr,

=⇒ ∃c ∈ C such that rMc, r′Mc, for some r′ ∈ R and

(p1, r
′) ∈ L, (p2, r′) /∈ L (wlog) (using Lemma 5.1)

=⇒ v /∈ r′, otherwise there would exist p3 ∈ P such that v ∈ p3;

p2 ∩ p3 6= ∅ and p3Lr′ would imply Condition 2 violation.

=⇒ ∃p′′ ∈ P′ such that p′′L′r′, u ∈ p′′ and v /∈ p′′.

Since, p′ ∩ p′′ 6= ∅ and (p′, c), (p′′, c) ∈M ◦ L′

Hence, contradiction (Condition 2 violation).

Case (2) r1 6= r2:
(2a): u ∈ p1 \ p2 (or v ∈ p2 \ p1, wlog)

Since, u ∈ p1, p1Lr2, therefore u ∈ r2
=⇒ ∃p3 ∈ P such that u ∈ p3 and p3Lr2
p2, p3, p

′ are such that u ∈ p3, v ∈ p2, u, v ∈ p′, p2Lr2, p3Lr2, p′L′r2.
This is not possible using result of Case (1). Contradiction.

(2b): u, v ∈ p1 ∩ p2
p1, p2 has at least one point each that is absent in all the other CPBs (using Lemma 5.2). Therefore, if
u, v, which are present in p1 ∩ p2 are merged in P′, then |P′| > |P|. Contradiction.
Hence, Opt-PSD gives the optimal division. 2

25

Chapter 6

Constraints Formulation

As just discussed, Projection subspace division outputs a set of CPBs and a mapping function L.
These form the input to the Constraints Formulation module, whose objective is to construct an LP
that captures the projection constraints while ensuring that the solution corresponds to a physically
constructible database.

Condition 1 of valid division ensures that each PRB r ∈ RA
is completely covered by a set of

CPBs. While Condition 2 ensures that all CPBs related to some c ∈ C are mutually disjoint. As a
consequence, a constraint c 〈f,A, l, k〉 can now be expressed as a summation of cardinalities of CPBs
related to c through M ◦ LA.

|πA(σf (T))| =
∑

p:(p,c)∈M◦LA

|p| (6.1)

Further, since each r ∈ RA
is related to at least one c ∈ C through M ◦ LA, the CPBs associated

with r ∈ RA
through LA are also disjoint. Hence, the cardinality of r ∈ RA

can be represented as a
summation of the cardinalities of related CPBs.

|r| =
∑
p:pLAr

|p| (6.2)

The LP construction uses the above facts while constructing constraints. Specifically, the LP
variables that are constructed, and their interpretations, are as follows:

xr: total tuple cardinality in r ∈ R, i.e. |r|
yp: (distinct) tuple cardinality in p ∈ PA, i.e. |p| for PAS A.

Given this framework, there are two classes of constraints, Explicit Constraints and Sanity Con-

straints, that constitute the input to the LP and are discussed in the remainder of this section.

26

6.1 Explicit Constraints
These are the LP constraints that are directly derived from the projection constraints. For each pro-
jection constraint, c : 〈f,A, l, k〉, the following pair of constraints are added:

(a) Total Row Cardinality Constraint ∑
r:rMc

xr = l (6.3)

(b) Distinct Row Cardinality Constraint (using Equation 6.1)∑
p:(p,c)∈M◦LA

yp = k (6.4)

6.2 Sanity Constraints
These are the additional constraints necessary to ensure that the LP solution can be used for construct-
ing a physical database instance. Here, there are three types of constraints:

Type 1: These constraints ensure that the row cardinality for each RB and CPB are non-negative in
the LP solution. That is,

xr ≥ 0,∀r ∈ R, and yp ≥ 0,∀p ∈ PA, for all PAS A (6.5)

Type 2: These constraints ensure that the total number of tuples for each RB is greater than or equal
to the number of distinct tuples along each applicable PAS for that block. Using Equation 6.2,
these constraints, for each RB r and each of its associated PAS A, are expressed as follows:∑

p:pLAr

yp ≤ xr (6.6)

where r = πA(r).

Type 3: Even after satisfying the above sanity constraints, we can still have a situation where the
total number of tuples for an RB may be positive while the number of distinct tuples along
some projection subspace remains zero. To avoid this scenario, we add the following constraint
for each RB r and each of its associated PAS A:

xr ≤ |T|
∑
p:pLAr

yp (6.7)

27

where r = πA(r) and |T| is the cardinality of T. (Note that in general we can replace |T| with
any sufficiently large positive integer).

We had already seen, in Chapter 3, the explicit constraints for our running example. The associated
sanity constraints are shown in the box below:

Type 1 x1, x2, x3, x4a, x4b ≥ 0

yAmt1 , yAmt2 , yAmt3 , yAmt4 ≥ 0

yQty1 , yQty2 , yQty3 , yQty4 , yQty5 , yQty6 ≥ 0

Type 2,3 yAmt1 + yAmt2 ≤ x1 ≤ |T|(yAmt1 + yAmt2)

yAmt1 + yAmt3 ≤ x2 ≤ |T|(yAmt1 + yAmt3)

yAmt4 ≤ x3 ≤ |T|yAmt4

yQty1 + yQty3 ≤ x2 ≤ |T|(yQty1 + yQty3)

yQty2 + yQty6 ≤ x3 ≤ |T|(yQty2 + yQty6)

yQty3 + yQty4 ≤ x4a ≤ |T|(yQty3 + yQty4)

yQty2 + yQty5 ≤ x4b ≤ |T|(yQty2 + yQty5)

6.3 Sufficiency for Data Generation
For an RB and an associated PAS, the above sanity constraints ensure that any LP solution can always
be used to generate data that conforms to it. Now, since RB is symmetric in nature, data across
different PASs can be generated independently and concatenated together. Therefore, the constructed
LP is sufficient for data generation.

6.4 Workload Scalability and Robustness
Inspired by graphical model-based table decomposition techniques that were proposed in [5], PiGen
adopts an optimization of decomposing the denormalized table T into a collection of sub-tables based
on which attributes co-appear in a constraint. Subsequently, these sub-tables undergo the various
partitioning algorithms that were discussed in this paper. This decomposition helps to further reduce
the number of variables in the LP. After the LP is solved, the solutions for the sub-tables are merged
to get the corresponding synthetic denormalized table.

Other than the above optimization, to handle larger workloads, several heuristics can be adopted.
One such heuristic is to not create all the CPBs in one go. Instead, first assume that all the PRBs are
mutually exclusive and therefore, create only one CPB per PRB. If with this assumption, the obtained

28

solution has minor errors in satisfying the constraints, prune the creation of other CPBs. If the errors
are high, then progressively add more CPBs by now assuming that at most two PRBs intersect, and
so on. Being an underdetermined system, there always exist a sparse solution to the LP – therefore,
this algorithm is expected to converge quickly. However, from the solution quality perspective, using
a sparse solution may not always be desirable, as was also shown in [17]. This is so because, sparse
solutions create large holes in the data space, where there are no data points. This can lead to poor
accuracy on unseen constraints. Constructing an approximation scheme that achieves better workload
scalability while producing qualitatively robust solutions is an area of future research.

29

Chapter 7

Data Generation

The LP solution gives the following information:

1. A list of RBs with their corresponding row cardinalities, and

2. For each RB and its associated PASs, a list of CPBs with their associated (distinct) row cardi-
nalities.

Thus far, we have only associated statistical significance to each CPBs, specifying the presence or
absence of their tuples in RBs. Now, we drill down to assign intervals for each CPB, thereby producing
the summary tabulation for all RBs. The CPBs along each PAS are assigned intervals independently
since each RB is symmetric along its associated PASs. The final summary that is produced can be used
for either on-demand tuple generation, or for generating a complete materialized database instance.
We discuss the summary construction and tuple generation procedures here.

7.1 Summary Construction
The summary construction module compactly stores information needed for efficient tuple generation.
It first assigns intervals to each of the populated CPBs from which data for the CPB is eventually
generated. A challenge in interval assignment is that the domains of different CPBs may intersect. For
example, in the running example, the domains of CPBs pQty2 and pQty6 intersect. However, since CPBs
that are related to a common projection constraint should not intersect, we assign disjoint intervals to
such CPBs to ensure Condition 2. Hence, pQty2 and pQty6 are allocated disjoint intervals for PAS Qty
as (pQty2 , c3), (p

Qty
6 , c3) ∈ M ◦ LQty. On the other hand, for PAS Amt, pAmt2 and pAmt4 are not related

to any c in C, and therefore their data generation intervals need not be disjoint. Finally, turning our
attention to Aleft, that is, the attribute-set on which no projection is applied, the block boundaries are

30

A1 A2 ... Aα Aleft

RB
Card.

CPB1: card., CPB1: card., ... CPB1: card.,
PBCPB2: card., CPB2: card., ... CPB2: card.,

...

Figure 7.1: Sample RB in Summary

kept as is and no distinct tuple count is maintained. Further, the number of distinct values can range
anywhere from 1 to the block cardinality without violating the constraints.

With the above process, a possible interval assignment for the running example is:

pAmt2 ← [1100, 2500) pQty2 ← [20, 25)

pAmt4 ← [500, 3000) pQty6 ← [25, 40)

The summary is maintained RB-wise, as per the template structure shown in Figure 7.1. We
see here that all the CPBs associated with the block, along with their distinct tuple cardinalities, are
represented. Using α to denote the total number of associated PASs, an RB can be represented in α+1

components, with each component associated with a PAS has a distinct row-cardinality. Lastly, each
RB has an associated total cardinality. For a populated instance of the template, and its interpretation,
we refer the reader to the example database summary previously shown in Figure 2.2.

7.2 Tuple Generation
Using the information in the summary, database tuples are instantiated. The algorithm iterates over
each RB and generates the number of rows specified in the associated total cardinality value. For an
RB and an associated PAS A, each CPB is picked and the corresponding partial tuples are generated.
This gives a collection of partial tuples for A which may be less than the total cardinality. To make
up the shortfall without altering the number of distinct values, we repeat the generated partial tuples
until the total cardinality is reached. For the Aleft component, which has only a single interval, any
partial-tuple within its boundaries can be picked for repetition. Finally, all partial-tuples of the RB are
concatenated to construct its output tuples.

Inter-Block Dependencies. The CPBs are associated with a group of RBs through the relation L.
We have to ensure that the partial-tuples, associated with a CPB, are identical for each of the associated
RBs. To do so, we employ a deterministic algorithm that takes an interval and a cardinality as input
and produces a set of distinct points, equal to the cardinality, from the interval, and use this set in
all the associated RBs.As a case in point, for the sample summary in Figure 2.2, the partial tuples
generated for the CPB with interval [20, 25) and distinct row cardinality 5 will be used to populate
both r3 and r4b.

31

Chapter 8

Experiments

In this section, we evaluate the empirical performance of PiGen, which has been implemented in a
Java tool incorporating the concepts presented in the previous sections. The popular Z3 solver [3]
is invoked by the tool to compute the solutions for the LP formulations. Our experiments cover the
accuracy, time and space overheads aspects of PiGen.

Database Environment The standard 1 TB TPC-DS [2] decision-support benchmark warehouse
is used in our experiments. It is hosted on a PostgreSQL v9.6 engine [1], with a vanilla HP Z440
workstation serving as the hardware platform.

Workload Construction To construct the input workload, we first executed a large set of queries
derived from the benchmark. The queries were chosen to cover both fact tables and dimension tables
in the warehouse. Here, we report on the four (denormalized) tables that were subject to the maxi-
mum number of projection operations, namely, the STORE SALES (SS), CATALOG SALES (CS) and
WEB SALES (WS) INVENTORY (INV) tables.

We created two workloads, C and W, of projection-inclusive constraints spread over these four
tables. C has all mutually compatible constraints, while W is a superset of C, featuring additional
constraints that result in conflicts. The distribution of constraints over the four tables for these two
workloads is enumerated in Table 8.1.

Table 8.1: Distribution of Constraints

Table # Constraints (C) # Constraints (W)
SS 16 52
CS 15 28
WS 16 29
INV 6 8

32

In presenting the experimental results, we initially focus on the compatible workload C. Subse-
quently, using W, we discuss the corresponding performance for workloads featuring conflicts.

8.1 Accuracy
The constraints in the C workload cover a wide variety of complexities, with their cardinalities vary-
ing from a few rows to several million rows. Further, the PAS lengths vary from one to six. A
representative sample constraint from the workload is:

c : 〈f ,A,31921358,15061〉,
applied on the denormalized relation of STORE SALES where
A : {i category, i brand, s store name, s company name, d moy} and
f : d year = 2002 ∧

(i category ∈ (‘Jewelry’,‘Women’) ∧ i class ∈ (‘mens watch’,‘dresses’)) ∨

(i category ∈ (‘Men’,‘Sports’) ∧ i class ∈ (‘sports-apparel’,‘sailing’))

When PiGen was run on these inputs, the generated data satisfied all the constraints with 100%
accuracy – this was explicitly confirmed by running the original queries on the synthetic database and
monitoring the operator outputs.

8.2 Time and Space Overheads
Having established the accuracy credentials of PiGen, we now turn our attention to the associated
computational and resource overheads. To begin with, the summary construction times and sizes for
the four summary tables are reported in Table 8.2. We see here that the time to produce the summary
is in a few tens of minutes. From a deployment perspective, these times appear acceptable since
database testing is usually an offline activity. Moreover, the summary sizes are miniscule, just a few
100s of kilobytes at most.

Table 8.2: Overheads

Table Summary
Time

Summary
Size

SS 21 min 58 kB
CS 32 min 117 kB
WS 15 min 64 kB
INV 2 sec 13 kB

Table 8.3: Block Profiles

Table FB RB CPB
SS 74 88 132662
CS 139 141 165936
WS 119 132 73929
INV 11 16 41

Drilling down into the summary production time, we find that virtually all of it is consumed in the
LP solving stage. In fact, the collective time spent by the other stages was less than ten seconds in all
the four cases. These results highlight the need for minimizing the number of LP variables, since the

33

solving time is largely predicated on this number. To obtain a quantitative understanding, we report
the sizes of the intermediate results at various pipeline stages in Table 8.3 – specifically, the table
shows the number of FBs, RBs, and CPBs created by PiGen. We see here that there is huge jump in
the number of regions from the initial FB to the final CPBs, testifying that C has considerable overlap
among its constraints, and therefore represents a “tough-nut” scenario wrt projection.

Note that the time and space overheads incurred are intrinsically data-scale-free, i.e., they do not
depend on the generated size. We explicitly verified this property by running the PiGen algorithm
over 10 GB and 100 GB versions of the TPC-DS database.

The summarized table can be used to generate tuples either in-memory during query processing,
or to produce materialized instances. The time to generate the tuples from the summary in-memory is
reported in Table 8.4, and we see that even a huge table such as SS, having close to 3 billion records,
is generated within a few minutes.

Table 8.4: Tuple Generation Time

Table # Rows Tuple Gen.
Time Table # Rows Tuple Gen.

Time
SS 2.9 bn 4 min WS 0.72 bn 8 seconds
CS 1.4 bn 1.5 min INV 0.78 bn 9 seconds

8.3 Workload Decomposition
We now turn our attention to conflicting workloads, which require the pre-processing step of workload
decomposition. In particular, we have evaluated the PiGen results on W for two decomposition strate-
gies: (a) Instance-based Decomposition, and (b) Template-based Decomposition, which are discussed
below.

8.4 Instance-based Decomposition (ID)
Here the decomposition algorithm uses Definition 3.1 of a conflicting pair, and for this framework,
the number of workloads obtained for the four tables are shown in Table 8.5. We observe that de-
spite using an approximate vertex coloring algorithm (Chapter 3.1), a partitioning of W into at most
6 sub-workloads sufficed for ensuring internal compatibility. Interestingly, the aggregate summary
generation times are extremely small, completing in just a few seconds, and much lower than the
corresponding numbers for C in Table 8.2. At first glance, this might appear surprising given that W
is more complex in nature – the reason is that due to workload decomposition, an array of databases
is produced for W with low individual production complexity, whereas a single unified database is

34

produced for C. From a testing perspective, it is preferable to generate the minimum number of
databases, and therefore we would always strive to have as little decomposition as possible.

Table 8.5: Workload Decomposition - ID

Table Sub-Workload
Sizes

Aggregate
Summary Time

Aggregate
Summary Size

SS 13,11,8,7,7,6 14 s 135 kB
CS 14,5,5,4 12 s 69 kB
WS 12,10,7 7 s 58 kB
INV 6,2 3 s 16 kB

8.5 Template-based Decomposition (TD)
Here, the decomposition algorithm assumes conflicting pairs are defined at a template level. That is,
two constraints conflict if their PASs partially intersect. The reason we consider TD is to remove any
coincidental performance benefit that may have been obtained thanks to the specific filter predicate
constants present in the original workload. Table 8.6 shows the number of workloads obtained for
the four tables with this artificially expanded definition of conflict. We observe that even here, just
8 sub-workloads are sufficient for producing compatibility. Finally, again thanks to decomposition,
both the summary generation times and the summary sizes are extremely small.

Table 8.6: Workload Decomposition - TD

Table Sub-Workload
Sizes

Aggregate
Summary Time

Aggregate
Summary Size

SS 10,10,8,8,5,5,4,3 70 s 109 kB
CS 9,7,4,4,4 14 s 117 kB
WS 9,9,6,5 7 s 41 kB
INV 6,2 2 s 16 kB

35

Chapter 9

Related Work

Over the past three decades, a variety of novel approaches have been proposed for synthetic database
generation. The initial efforts (e.g. [12, 10]) focused on generating databases using standard mathe-
matical distributions. Subsequently, data generation techniques that incorporated the notion of con-
straints were proposed – for instance, adherence to a given set of metadata statistics was addressed
in [20, 16, 4]. In more recent times, generation techniques driven by constraints on query outputs
have been analyzed. A particularly potent effort in this class was RQP [7], which receives a query
and a result as input, and returns a minimal database instance that produces the same result for the
query. An alternative fine-grained constraint formulation is to specify the row-cardinalities of the
individual operator outputs, and the techniques advocated in [8, 15, 5, 18, 17, 14, 11] fall in this
category. Among these, QAGen [8], MyBenchmark [15] and TouchStone [14] take parameterized
constraints as input, i.e. the predicate constants are variables. From these constraints, these tech-
niques generate a synthetic database and predicate instantiations, such that applying the instantiated
constraints on the synthetic data produces the desired number of rows. A stricter notion of constraints
was considered in [5, 18, 17, 11], where instantiated constraints in the form of cardinality constraints
are given as part of the input itself, and the generated data is expected to conform to them. While
these techniques handled constraints with filter and join operators satisfactorily, their support for the
projection operator was stylized to special cases. For instance, DataSynth [5] proposed a projection
generator that catered to individual columns. In contrast, in PiGen, we consider a general class of
projection-inclusive constraints that bring in a host of new technical challenges, as outlined in the
Introduction.

Complementary to the studies by the database community, the mathematical literature includes
work such as [9, 22, 13], where they study the set of sanity constraints that need to be satisfied by
a given set of projection results to ensure table constructibility. In this regard, a class of constraints

36

called BT (Bollobás and Thomason) inequalities were proposed in [9], which capture the necessary
conditions to be satisfied by projection output cardinalities. However, they are not sufficient, making it
possible that no actual database can satisfy these values. Another class of constraints, called NC (non-
uniform cover) inequalities, was proposed in [22]. These form sufficient conditions such that if the
constraints are satisfiable, then a database construction is always possible. However, the limitation
is that the satisfiability is not guaranteed. Further, the feasibility space does not exhibit a convex
behaviour, and therefore, it cannot be expressed as a set of linear constraints [13]. To address these
theoretical hurdles, PiGen incorporates the techniques of workload decomposition and symmetric
refinement. Further, the set of sanity constraints added in the LP formulation ensure that the solution
is always constructible within the assumptions.

37

Chapter 10

Conclusions

Synthetic data generation from a set of cardinality constraints has been strongly advocated in the
contemporary database testing literature. PiGen expands the scope of the supported constraints to
include, for the first time, the general Projection operator. The primary challenges in this effort
were tackling union cardinality, projection subspace dependencies and block dependencies. By using
a combination of workload decomposition and symmetric refinement, dependencies across various
projection subspaces were handled. Within a projection subspace, union was converted to summation
via division of the space. Further, an optimal division strategy was presented to construct efficient
LP formulations of the constraints. Finally, block dependencies were catered to through deterministic
tuple instantiation techniques. The experimental evaluation on a TPC-DS platform indicated that
PiGen successfully produces generation summaries with viable time and space overheads.

Currently, PiGen deems any exact solution to the LP as satisfactory for database generation. This
choice could be materially improved in two ways: 1) By using approximation algorithms that sacrifice
constraint accuracy to a limited extent to achieve better workload scalability; and 2) By preferentially
directing the LP solver towards solutions with reduced sparsity so as to improve the robustness of the
generated database to future queries outside of the current workload.

38

Bibliography

[1] PostgreSQL. https://www.postgresql.org/docs/9.6

[2] TPC-DS. http://www.tpc.org/tpcds/

[3] Z3. https://github.com/Z3Prover/z3

[4] A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: Scalable and Expressive Data Generation.
In PVLDB, 5(12), 2012.

[5] A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints. In ACM

SIGMOD Conf., 2011.

[6] A. Arasu, R. Kaushik, and J. Li. DataSynth: Generating Synthetic Data using Declarative
Constraints. In PVLDB, 4(12), 2011.

[7] C. Binnig, D. Kossmann, and E. Lo. Reverse Query Processing. In 23rd ICDE Conf., 2007.

[8] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen: Generating Query-Aware Test
Databases. In ACM SIGMOD Conf., 2007.

[9] B. Bollobás and A. Thomason. Projections of Bodies and Hereditary Properties of Hypergraphs.
Bulletin of the London Mathematical Society, 27 (1995).

[10] N. Bruno and S. Chaudhuri. Flexible Database Generators. In 31st VLDB Conf., 2005.

[11] A. Gilad, S. Patwa, and A. Machanavajjhala. Synthesizing Linked Data Under Cardinality and
Integrity Constraints In ACM SIGMOD Conf., 2021.

[12] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly Generating
Billion-Record Synthetic Databases. In ACM SIGMOD Conf., 1994.

[13] I. Leader, Z. Randelovic, Eero Raty. Inequalities on Projected Volumes. arXiv:1909.12858

39

https://www.postgresql.org/docs/9.6
http://www.tpc.org/tpcds/
https://github.com/Z3Prover/z3

BIBLIOGRAPHY

[14] Y. Li, R. Zhang, X. Yang, Z. Zhang, and A. Zhou. Touchstone: Generating Enormous Query-
Aware Test Databases. In USENIX ATC, 2018.

[15] E. Lo, N. Cheng, W. W. Lin, W.-K. Hon, and B. Choi. MyBenchmark: generating databases for
query workloads. In The VLDB Journal, 23(6), 2014.

[16] T. Rabl, M. Danisch, M. Frank, S. Schindler and H. Jacobsen. Just can’t get enough - Synthe-
sizing Big Data. In ACM SIGMOD Conf., 2015.

[17] A. Sanghi, Rajkumar S., and J. R. Haritsa. Towards Generating HiFi Databases. In 26th DASFAA

Conf., 2021.

[18] A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable and Dynamic Regeneration of Big
Data Volumes. In 21st EDBT Conf., 2018.

[19] A. Sanghi, R. Sood, D. Singh, J. R. Haritsa, and S. Tirthapura. HYDRA: A Dynamic Big Data
Regenerator In PVLDB, 11(12), 2018.

[20] E. Shen and L. Antova. Reversing statistics for scalable test databases generation. In DBTest

Workshop, 2013.

[21] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, McGraw-Hill, New
York, Seventh Edition, 2020.

[22] Z. Tan and L. Zeng. On the Inequalities of Projected Volumes and the Constructible Region. In
SIAM Journal on Discrete Mathematics, 33(2), 2019.

40

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Design Principles
	2.1 Isolating Projections
	2.2 Projection Subspace Division
	2.3 Deterministic Instantiation

	3 PiGen Pipeline
	3.1 Workload Decomposition
	3.2 LP Formulation
	3.3 Data Generation

	4 Symmetric Refinement
	4.1 Refinement Algorithm

	5 Projection Subspace Division
	5.1 Valid Division
	5.2 Optimal Division
	5.3 Opt-PSD Algorithm
	5.4 Proof of Optimality

	6 Constraints Formulation
	6.1 Explicit Constraints
	6.2 Sanity Constraints
	6.3 Sufficiency for Data Generation
	6.4 Workload Scalability and Robustness

	7 Data Generation
	7.1 Summary Construction
	7.2 Tuple Generation

	8 Experiments
	8.1 Accuracy
	8.2 Time and Space Overheads
	8.3 Workload Decomposition
	8.4 Instance-based Decomposition (ID)
	8.5 Template-based Decomposition (TD)

	9 Related Work
	10 Conclusions
	Bibliography

