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Abstract

A Suffix Tree is a tree structure which exposes the internal structure of a string in a

deeper way helping to solve problems on strings quickly. With increasing size of main

memory even big suffix trees can be fitted into main memory. The Ukkonen construction

algorithm used in constructing the suffix tree does not produce tree layout which is cache

friendly. In this report, we explore the possibility of finding cache conscious layouts and

data structures so that the algorithms applied on suffix tree can be executed faster. We

show that the length of present cache lines in modern processors are too insufficient

to exploit spatial locality for suffix tree search algorithms. We analyze the effects of

different data structures used for suffix tree searches in depth, and find the most efficient

structure that is cache conscious. The cache conscious data structures perform search

faster by approximately 70% as compared to standard implementations.

ii



Contents

Acknowledgements i

Abstract ii

Keywords v

1 Introduction 1
1.1 Suffix Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature 4
2.1 Ukkonen algorithm and construction of suffix trees . . . . . . . . . . . . 4
2.2 Algorithms used on suffix trees . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Stellar Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Trellis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Related work in cache conscious data structures . . . . . . . . . . 12

3 Layout Changes 13
3.1 WORK DONE and EXPERIMENTAL RESULTS . . . . . . . . . . . . . 13

3.1.1 Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Data Structure Modifications 19
4.1 Linked List Vs Array Implementation . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Array Implementation - pulled up leaves . . . . . . . . . . . . . . . . . . 21
4.3 Array Implementation - Retaining only non null pointers . . . . . . . . . 23
4.4 Array Implementation - Encode characters instead of end index . . . . . 24
4.5 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Improvements w.r.t speed of execution . . . . . . . . . . . . . . . . . . . 27

5 Conclusions 29

References 31

iii



List of Figures

1.1 suffix tree example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Ukkonen Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Maximal substring search Algorithm . . . . . . . . . . . . . . . . . . . . 10

3.1 L1 misses of different layouts (Trellis and BFS Layout have almost the
same values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 L2 misses of different layouts . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 L1 misses of stellar layout with varying ’nodes per page’ . . . . . . . . . 17

4.1 Node Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Nodes with leaf information in parent node itself . . . . . . . . . . . . . . 21
4.3 Cache Miss Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Size of Full tree and the reduced tree (after elimination of non null pointers) 22
4.5 Edge information inside node . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Execution Time Vs Size of input string . . . . . . . . . . . . . . . . . . . 28

iv



Keywords

Suffix tree, Ukkonen, Trellis, Cache conscious, Stellar.

v



Chapter 1

Introduction

1.1 Suffix Tree

A suffix tree is a tree data structure that represents the suffixes of a given string such that

it helps fast implementation of many important string operations. Some of the string

algorithms applied with a suffix tree represent the lower bounds for those operations.

Given a string S, the suffix tree is a tree whose edges represent strings (can be one

character or more than one character), and every suffix of S (there are n suffixes in a

string of length n) corresponds to one and only one path from the tree’s root to some

leaf. The path-label of a node refers to the label of the path from the root of T to that

node. Thus every node can be uniquely represented as its path label.

To construct a suffix tree for string S, it takes linear space and time in the length of

the string. There are a number of algorithms in literature like

• Weiner algorithm [8]

• McCreight algorithm [9]

• Ukkonen algorithm. [10]

Wiener was the first to show that suffix trees can be built in linear time. His algorithm

assumes that the entire string is known at the start of the algorithm and does a right to

1



Chapter 1. Introduction 2

left scan and builds the suffix tree. Ukkonen differs in its approach that it scans left to

right and constructs the suffix tree using lesser space than Weiner’s algorithm.

Post construction, a number of operations can be performed efficiently. Example

search algorithms include

• locating a substring in S

• searching all occurrences of a substring in S

• matching statistics or maximal substring search

• longest common substring problem

• least common ancestor of any two nodes

Its also important to note that the size of the suffix tree is on an average around 20 times

the size of the string. So if an input string is 1 MB long (or the number of characters is

1 million), the suffix tree is typically around 20 MB.

There are two kinds of nodes in a suffix tree, internal nodes and leaf nodes. The

internal node has at least 2 children and a maximum of |Σ| children, where |Σ| represents

the alphabet size. The edges are labelled with the string they represent. A suffix link

is an important addition to the internal node information to make the construction of

suffix tree linear. Let xα be an arbitrary string, where x denotes a single character and

α denotes a possibly empty substring. For an internal node v with path label xα, if there

is another node s(v) with path-label of α, then a pointer/edge from v to s(v) is called a

suffix link. Leaf nodes do not contain suffix links.

An example suffix tree is shown in Figure 1.1. The suffix tree is the representation

of the string ’GTTAATTACTGAAT$’. The solid lines represent tree edges from parent

to children. The suffix links of internal nodes are represented as dashed lines. Once a

suffix tree is constructed, a lot of string operations become simple and straight forward.

For example, in the suffix tree in figure 1.1, if we need to find the presence of substring

’TACT’ then we see if there is a path from the root with label ’TACT’. If it exists, then

the substring exists and otherwise it doesn’t exist.



Chapter 1. Introduction 3

Figure 1.1: suffix tree example

1.2 Organization of this thesis

Chapter 2 gives details about how the construction is achieved in linear time and space

emphasizing on the Ukkonen algorithm. It also gives details about two algorithms applied

on the suffix tree - exact substring search and maximal substring search. Chapter 3

discusses related work like trellis algorithm [5], cache conscious prefix tree [20], etc.

Chapter 4 discusses work done (layout changes) and experimental results. Chapter 5

discusses the data structure modifications made to the suffix tree and its experimental

results. The last chapter discusses the conclusion, future work and ideas.



Chapter 2

Literature

2.1 Ukkonen algorithm and construction of suffix

trees

Fig 2.1 gives a summary of Ukkonen algorithm at a high level. If no optimizations or

tricks are applied, the method looks to be a O(n3) time algorithm. A lot of optimizations

have been applied by Ukkonen to make this algorithm an O(n) algorithm.

The algorithm is divided into n phases. In each phase i + 1, tree sti+1 is constructed

from sti. Each phase i is further divided into i extensions. In extension j of phase

i + 1 the algorithm first finds the end of the path from the root labeled with substring

InputSeq[j..i]. It then extends the substring by adding the InputSeq[i+1] to its end,

unless it’s already there.

The most important optimizations used by the Ukkonen algorithm are summarized

here

• Use of suffix links:

Normally every node in a tree has pointers to its parent and its children. But a

suffix tree node has a special type of pointer, in addition to the parent and child

pointer, which is the suffix link. If a internal node has a path label of xα from the

root, then the suffix link of this node will point to the internal node which has a

4



Chapter 2. Literature 5

UkkonenSuffixTreeConstruction (InputSeq[n])
Input:
InputSeq[n] (The string for which tree has to be built)
Let st0 be the implicit suffix-tree for InputSeq[0]
outerloop:
for i = 0 to n do

j = 0

innerloop:

while j less than (i + 1) do

find the node Nij whose path-label is InputSeq[j..i] in sti
if Nij ends at a leaf lk
then

Extend lk by adding character si+1

else

if (from the end of Nij there is no path labeled si+1)

then

sti+1 = split edge in sti and add a new leaf

else

sti+1 =sti
end while (innerloop)

end for (outer loop)

Figure 2.1: Ukkonen Algorithm
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path α from the root. Intuitively, this reduces the need to come from root to the

node represented by α and can be reached just by traversing the suffix link. This

reduces the time complexity to O(n2) algorithm

• Skip and count trick:

This trick is based on the observation that when the suffix link of the present node

is not available and we have to move to its parent, follow the suffix link and then

come down to the correct node which is the corresponding suffix link of the original

node then we can blindly count the number edge length of the correct child to be

followed rather than comparing the characters of an edge one by one.

• Representation of edge as start index and end index:

Consider a string from a-z, where no characters are duplicated. The alphabet size

is 26 and string size is also 26. If we have to represent the edge labels by the

actual string, there are 26*27/2 characters in all (including $ symbol at the end).

This means that if we try to represent the characters of every edge in the suffix

tree in the nodes, then the algoithm will be O(n2) as the input itself is O(n2). So

each edge is represented as start index and end index, thus making all node size

uniform, also reducing the need to store these combinations at the node level. The

problem that arises because of this representation is that, the original string must

be present along with the suffix tree for any post construction algorithm to work.

• Representing the intermediate end index by a special symbol ‘e’:

We note that every time in the main loop of the algorithm, a lot of nodes are

only extended by only one character, i.e the end index is updated by one. Instead

of doing this for every loop, we do this only once at the end. In the intermediate

stages the end index is just represented by a special symbol say ‘e’ which is updated

to the length of the string after the outer loop of the algorithm finishes.

Due to all these enhancements and improvements, the Ukkonen algorithm reduces

to a linear time algorithm.Ukkonen algorithm is the most popular way of constructing a
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suffix tree till date due to the following salient points:

• It is an online incremental algorithm.

• It scans the string from left to right unlike other linear time algorithms like Wiener

algorithm which goes from right to left.

• It is also a linear space algorithm. No temporary extra memory is required.

Problems

Though the Ukkonen algorithm has lots of advantages, it has its shortcomings. Some

of them are:

• The use of suffix links make the traversals cache unfriendly. It is observed that

while travelling from one node to its suffix link the locality of reference is lost as

the node of action shifts from one part of the tree to a different part of the tree.

Trying to put the suffix links together (we can view the tree as a tree whose edge

labels are suffix links), we lose locality of reference with respect to the normal tree

edges. Many papers (e.g Stellar[4]) exist which try to maintain locality of suffix

link and tree edges at the disk page level.

• The creation order of the internal nodes are random and the nodes are created

such that the siblings of a node are created in a non localized way. This is because

an internal node can be created at any time of the algorithm whenever a need to

split an edge arises. This is completely independent to any split that may happen

to the edge that arises from the sibling of a node. Also because of the inherent

nature of the suffix tree, the tree is unbalanced and leaves occur at different levels

of the tree.

2.2 Algorithms used on suffix trees

This section brings out different algorithms which can be used on a suffix tree. It explains

two of the algorithms, one which uses suffix link and the other which doesn’t use suffix

link.
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For the following discussion, assume the length of the original string is n and the

suffix tree is built over this string.

Algorithms that do not use suffix links

• Exact string matching:- Given a query string of length ’m’, it can be checked in

O(m) time whether this is a substring that occurs in the original string

• Exact string matching, finding all occurrences:- This algorithm is similar to the

previous algorithm but finds all the occurrences of the query string in the original

string

• Largest Common substring of two strings:- One method of finding this is that a

single suffix tree consisting of the two strings are built (this is called a generalized

suffix tree). Then using this generalized suffix tree, the largest common substring

that occurs in both the strings can be found out. One more method of finding the

solution uses the suffix links.

Algorithms that use suffix links

• Matching statistics:- The original string of length n. The query string is of length

m. The objective of this method is to produce at each index of the query string, a

number which is called the matching statistics at that index represented by ms(i), i

ranging from 1 to m. ms(i) denotes the maximal substring that occurs somewhere

in the original string that matches with the query string starting at i.

• Longest common substring algorithm using suffix links:- Compute the matching

statistics after constructing the suffix tree for one of the strings (instead of two used

by the algo without suffix links) and then make a linear scan over the matching

statistics obtained and the largest value gives the longest common substring for

the two strings. The advantage is that this is more space efficient than the other

algorithm which doesn’t use suffix links.

Now we explain two of the algorithms in detail
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Exact string matching, finding all occurrences

In this algorithm, using the query string of length m we traverse down the suffix tree

of the first string. If before all the characters of the query string are matched, we get a

mismatch, then the query string does not occur in the original string as a substring. If

the query string does match and ends at a leaf node, then the substring occurs exactly

once in the original string and its starting position can be got from the leaf node. If the

match ends at an internal node, then the number of times the query string occurs in the

original string is the number of leaves under the internal node and the index at which

they occur can be obtained by travelling down the subtree till the leaves.

Exact string matching can also be done using the Knuth Morris Pratt [21] algorithm.

But there are some advantages of using suffix tree over KMP algorithm.The salient

features of this algorithm are (for simplicity we will consider first occurrence):

• The construction of the suffix tree and the search algorithm (first occurrence) takes

O(m+n) time. This is the best known exact search algorithm. The KMP algorithm

also achieves the same bounds.

• The advantage over KMP algorithm is that this involves a one time construction

and so given ’l’ queries this can find solution in O(n+lm) whereas the KMP algo-

rithm will have to do it in O(l(m+n)).

• If the initial string on which query will be done is known earlier, then suffix tree

is ideal for such a scenario. Since the suffix tree can be constructed initially and

then any query can be answered in linear time in its size as it arrives.

The second algorithm that will be explained uses suffix link

Maximal substring search

This algorithm starts at the root and tries to find matching statistics (i.e the maximal

substring in the original string that matches with the query string starting from some

index ’i’) for each position of the original string. It prints the match only if the matched

string is greater than a user given threshold.
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Maximal Substring search
Algorithm
MaximalSubstringSearch (S, T , Q, λ)
Input:
S : Database sequence
T : Suffix-tree over the database sequence S
Q : Query string
λ : Minimum match-length to be reported
Output:
L = triplets (len, q, d) such that Q[q ... q + len] = S[d ... d + len]; Q[q + len
+ 1] != S[d + len + 1]; l greater than λ and len is maximal given q
Algo:
v = root of T ; j = 0; k = 0; L = NULL
for i = 0 to ‖Q‖ do

(v’, j) = StepDown(v,Q[i..]) (//v’ is the node at which matching has stopped,
and j is the length of the match)

if j greater than λ then

L = L Union TraverseSubtree(v’)

end if

if IsLeaf (v’) = true then

k = v’.edgelen - j

v’ = v’.parent

end if

v = v’.suffixlink

v = SkipDown(v, k,Q[i...]) //Use the skip-count trick to traverse without
comparisons

end for

Figure 2.2: Maximal substring search Algorithm
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It traverses from the root till the first mismatch occurs which gives matching statistic

number for index 1 (represented as ms(1)). Next it traverses the suffix link and then

reaches the node whose path label is α which is the substring starting from index 2 till

ms(1) in the query string. From here it starts and tries to match any more characters

from the query string. Whenever a mismatch occurs,the maximal string matched so far

is printed if it exceeds the threshold length specified. The algorithm is shown in Figure

2.2.

The complexity of the maximal substring match is O(|Q| + loc),where |Q| is the

length of the string queried and loc is the number of locations of match.

Since this algorithm used both suffix link and tree edges while searching, this will be

considered as a representative algorithm for all search algorithms of the suffix tree for

the analysis and experiments that follow.

2.2.1 Stellar Algorithm

This algorithm changes the layout of nodes of a suffix tree such that it makes search

faster. It is a disk based algorithm. The algorithm starts the suffix-tree traversal at

the root of the suffix-tree, and recursively traverses the subtree below. When a node is

visited, the suffix-link target of the node is visited next, if not already visited through

the tree-edges. Thus an internal node and its suffix-link target treated as a pair, and

are scheduled for recursive traversal in sequence. This results in subtree under a node

and the subtree under corresponding suffix-link target to be recursively processed in

succession resulting in a large fraction of suffix-links that span these two subtrees to be

intra-page, in addition to the tree-edges of each subtree. When enough nodes have been

visited to fill a page, each node in the queue is scheduled for a separate recursive Stellar

traversal, until all the nodes have been processed.

2.2.2 Trellis Algorithm

The Trellis algorithm is a disk based algorithm characterized by the fact that
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• It constructs a disk based suffix tree for very large DNA strings like the human

genome and

• It retains the suffix links

A few other algorithms have been proposed in literature which also builds disk based

suffix trees ([11, 7]) but does not include suffix links and so cannot be used in algorithms

like maximal substring search for fast implementations.

2.2.3 Related work in cache conscious data structures

In [20], FP tree mining is explored w.r.t cache consciousness. Cache-conscious prefix

tree is proposed to address poor data locality and instruction level parallelism. The

resulting tree improves spatial locality and also enhances the benefits from hardware

cache line prefetching. A tiling strategy is used to improve temporal locality. The result

is an overall speedup of up to 3.2 when compared with state-of-the-art implementations.

They also show how the algorithms can be improved further by realizing a non-naive

thread-based decomposition that targets simultaneously multi-threaded processors which

ensures cache re-use between threads that are co-scheduled at a fine granularity.

In [13], B+-Trees are shown to be not cache conscious as their utilization of a cache

line is low since half of the space is used to store child pointers. A new indexing technique

is proposed called Cache Sensitive B+-Trees” (CSB+-Trees). It is a variant of B+-Trees

that stores all the child nodes of any given node contiguously, and keeps only the address

of the first child in each node. The rest of the children can be found by adding an offset

to that address. Since only one child pointer is stored explicitly, the utilization of a cache

line is high.



Chapter 3

Layout Changes

3.1 WORK DONE and EXPERIMENTAL RESULTS

The work carried out involves two aspects

• Analyzing the layout of the nodes in the main memory and finding the cache

conscious characteristics of the different layouts

• Changing the data structure of the node and making it more cache friendly

3.1.1 Layouts

Four different layouts were analyzed

• Default Ukkonen Creation Order Layout

• Breadth First Layout

• Trellis Layout

• Stellar Layout

Creation order Layout

Here the default layout of the suffix tree when the Ukkonen algorithm is applied on a

string is called the Creation order layout. As the construction of the tree proceeds, an

13
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edge of the tree connecting two nodes may be broken and a new node inserted in between

but in the layout, the new node would be at the end, thus spatially separated from its

parent and also its child.

Breadth First Layout

Here, after construction of the tree using Ukkonen algorithms, a post facto reorganization

is done so that the siblings are grouped together.

Trellis Layout

In main memory, Trellis Layout is basically a Depth First Layout, i.e during the post

facto reorganization, a depth first traversal is done on the ukkonen layout and the nodes

are rearranged.

Stellar Layout

In this layout, depending on the parameter ’nodes per page’ (here page refers to just a

logical grouping of nodes), both siblings and the suffix link neighbours are brought as

close as possible. As soon as a node is placed, its suffix link neighbour if not already

placed is allocated the neighbouring location. Both the nodes’ children and its suffix

neighbours’ children are placed in the queue to be further processed. This is also a post

facto construction.

Experiments

For all the layouts, the L1 and L2 cache misses were measured. The maximal substring

search algorithm was run on the suffix tree built from a 10 MB character file consisting

of 1 million DNA string characters and the address traces were recorded in a file. This

trace was fed to Dinero cache simulator[6]. The size of the suffix tree is 556 MB. We

need twice this memory to change the layout. Also extra memory is required to map

the addresses of the nodes to the new address for the changed layout. The results are

shown in the following figure 3.1, 3.2 and 3.3. Since we have only simulated the cache
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Figure 3.1: L1 misses of different layouts (Trellis and BFS Layout have almost the same
values)



Chapter 3. Layout Changes 16

Figure 3.2: L2 misses of different layouts

parameters, it is not possible to study the impact of these cache improvements on the

overall application time.

In the plot of Figure 3.1, the size of the cache line (which is a parameter to be given

to the Dinero simulator) is varied from a small size to the total size of the cache itself.

Here the total size of the cache is assumed to be 16k. We observe that initially, the cache

miss rates decrease as the cache line size is increased and the spatial locality property

is exploited more and more. Observe that the X-axis exponentially increases and Y-axis

has values from 18% to 40% for Figure 3.1, and 40% to 80% for Figure 3.2.

As the size of the line becomes comparable to the size of the cache, the number of

lines in the cache decreases. Due to this, the cache miss again begins to rise in Figure

3.2. In case of L2 misses, the increasing cache line size decreases the L2 cache miss rates.

As the cache lines considered are much smaller than the total L2 size(8 MB), there is no

rise of cache miss rates with increasing cache line size as seen in the previous case.

The maximum impact is at 1k - 4k range. This means the cache lines have to be
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Figure 3.3: L1 misses of stellar layout with varying ’nodes per page’

much larger than what the present processors offer. The Intel pentium processors have

around 64 bytes cache line size and AMD processors have around 128k cache line size.

We observe that only if the cache line size is around 1k, or around 6% of the total cache

size, then we can get significantly lower cache misses for the different layouts. Otherwise

the cache miss rate tend to remain almost the same. So the present cache line sizes are

too small in order to exploit the spatial locality while searching in suffix tree.

Also, we observe that the Stellar layout will have a much lesser cache miss as compared

to the Breadth First and Creation Order Layout. This concurs with the results obtained

in [1] for the disk level layout. This is not surprising, as the page size at the disk to main

memory level is around 4k in modern systems, and we see that Stellar will outperform

other layouts as shown in the graphs.

We now explore the optimal node per page at which the stellar layout gives the

best performance in terms of cache misses. ’Node per page’ is a parameter given to the

algorithm so that the logical grouping of nodes can be done based on this parameter.



Chapter 3. Layout Changes 18

If ’node per page’ is 100, it means that for a logical grouping of 100 nodes, the suffix

link and tree edge locality is maximally preserved within the group, i.e most of the tree

edges and suffix links are within the group itself. Figure 3.3 gives the comparison of

cache miss rates for different ’nodes per page’ or λ . We observe that small value of λ

like 5 tends to give a non optimal performance, but a λ value of 50 or more gives a much

better performance. The optimal value is around 50 to 100. The other values also come

very close to the optimal performance as seen in the plot. This implies that if λ value is

sufficiently large, then locality property is exploited efficiently by the cache lines.

The reason that the best performance of the stellar layout is achieved when the node

per page parameter is around 50 to 100 nodes, is probably due to the fact that when

the logical group size is equal to the cache line size, then the spatial locality propety is

exploited best. Assuming that each internal node is around 25 bytes, then each logical

group occupies around 1250 bytes for 50 node per group or around 2500 bytes for 100

node per group. When the cache line size is also around 1k to 4k bytes then the stellar

layout gives the minimum L1 and L2 cache misses.

Now we explore the other direction of trying to obtain a cache friendly layout, i.e by

modifying the data structures.



Chapter 4

Data Structure Modifications

4.1 Linked List Vs Array Implementation

Previous works have proposed both linked list representation and array based implemen-

tation of the nodes that form the suffix tree. For the DNA based suffix trees the node

layout of linked list and array implementation is given in Figure 4.1.

The linked list representation is useful as the node size of internal node reduces very

significantly. The size of the internal node for an linked list representation is 20 bytes.

This can be further reduced to around 17 bytes as shown in [14] by exploiting redundant

information. But the major problem in a linked list representation is that for search

algorithm, traversing the tree becomes inefficient. For example to reach the 4th child we

must traverse the first three siblings and then reach the fourth child of a node using the

sibling pointer. This overhead is significant and increases the cache misses significantly

as we show in the experiments.

4.1.1 Experiments and Results

Here we show that the linked list representation leads to more cache accesses (or memory

accesses). So though the node space reduces when linked list is used, as more nodes have

to be visited, the search algorithms have higher memory accesses making linked list not a

very attractive scheme. This same observation was made in [1] for the disk level layout.

19
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Figure 4.1: Node Representations

Linked List Array

Total Reads 143 million 51 million

L1 misses 24 million 19 million

The above table gives the cache misses for array and linked list representation. The

suffix tree was built on a 1MB DNA string. 10000 queries were fired for maximal substring

search. The resulting address trace is fed into the dinero cache simulator with parameters

set to both intel and AMD processor cache parameters. We observe that the number of

reads in case of an array is 35.6% of the total reads in case of linked list. This manifests

in the search time being longer for linked list implementation.

The above table shows the difference in speed of execution of 10000 query strings for

maximal substring search on input string size of varying size. The reason for considering

maximal substring search is that it traverses both suffix links and tree edges thus can

be considered as a representative algorithm for a variety of search algorithms used on

suffix trees. It is clear that array based implementation is better than the linked list

counterpart.
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Figure 4.2: Nodes with leaf information in parent node itself

4.2 Array Implementation - pulled up leaves

As we have shown that array implementation performs better than linked list implemen-

tation, we now focus our attention to how to reduce the node size in an array based

implementation. One of the methods is to remove the leaf nodes itself and instead en-

capsulate that information in the pointer space of the parent node where originally the

pointer to the leaf node was present. Now given a pointer field of an internal node, we

need to distinguish between a pointer to another internal node and a leaf’s start value

stored in the pointer space itself. For this a information byte is added to every internal

node. Since a node can have five children at the maximum (including the $ child) we

reserve 5 bits in the info byte to indicate whether the corresponding pointer space is a

pointer to an internal node or the leaf node itself. Figure 4.2 illustrates the concept.

This kind of a tree is called a position tree as mentioned in [2]. This concept helps

in reducing the space occupied by the suffix tree by a significant extent. Instead a 4

byte leaf, we replace it with a 1 byte info byte on every internal node. So at least 3

times the number of leaf nodes (which is equal to the number of characters) is saved.
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Figure 4.3: Cache Miss Rates

Figure 4.4: Size of Full tree and the reduced tree (after elimination of non null pointers)

Further, observe that this elimination of storage space for leaf node cannot be done if it

was a linked list implementation as the sibling pointer has to be present in a leaf node

implementation of a linked list suffix tree. Both Intel cache parameters and AMD cache

parameters were input to Dinero simulator and the results are shown in Figure 4.3. The

cache miss analysis is presented in the next subsection.

Linked List Array

Time taken (str size: 10MB) 11.6 sec 9.8 sec

Time taken (str size: 15MB) 14.1 sec 10.9 sec

Time taken (str size: 20MB) 16.8 sec 14.1 sec
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4.3 Array Implementation - Retaining only non null

pointers

In an array based implementation, most of the node space is reserved for pointers to

children as there are five pointers to ’A’, ’C’, ’G’, ’T’ and ’$’ respectively. In most of

the cases, the number of children of a node may be less than the maximum. When a

suffix tree was built over a sample 10MB string, then we observe that 60% of the internal

nodes had only two children, 15% had 3 children. So instead of allocating space for all

children, only those pointers with non null pointers are retained. This helps us to save

space for the suffix tree.

As we see from the table in Figure 4.4 that as the size of the suffix tree increases,

significant amount of space can be saved by removing the non null pointers. The saved

space can be as much as 25% of the total size of the tree. We need to add a information

byte at the start of the node. For every internal node, the last five bits of the information

byte indicate whether the corresponding pointers to children for that node exist or not. If

the bit is set to 0, then the pointer is null and otherwise the corresponding pointer exists.

To access the correct pointer, the previous bits have to be evaluated. For example, if the

fourth child is present, then the bits for the first, second and third child are evaluated and

depending on this information, the correct offset to the fourth child pointer is calculated.

Now we analyze the reduction in cache misses because of pulled up leaves and non

null pointers. The table in Figure 4.3 gives details of the cache misses.

The first table in Figure 4.3 represents simulations for Intel cache parameters with

cache size of 512k and cache line size of 64bytes and associativity 4. The second table

represents simulations for AMD cache parameters with cache size of 1024k with cache

line size of 128bytes and associativity 2. Both the experiments had address traces of

maximal substring search of 10000 queries run on a suffix tree with total of 10 million

characters long string.

We observe that the L1 misses comes down from 38% to 25% and in the second case

from 30.26% to 23.97% and similarly the L2 misses also reduce. The reduced cache
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misses helps in making the search algorithm faster. The analysis of speed of execution

is given in the last subsection.

4.4 Array Implementation - Encode characters in-

stead of end index

In this section, we will analyze the impact of encoding characters directly within the node

rather than having two indices, start and end, which points to the offset in the original

string represented by the corresponding edge of the suffix tree. If we store the offsets

and not the characters directly, the disadvantage is that for every access of the node, in

order to find the substring represented by the edge coming into the node, we have to

refer to the original string. The reason for representing this information as an offset is

that it helps in having a constant sized field rather than a variable one for representing

information whose length can vary between 1 and potentially the size of the string itself.

When we analyze the suffix tree, we find that most of the edges have edgelength less

than twelve. The table in Figure 4.5 gives the details. We see that around 40% of

the edges in the suffix tree have less than or equal to 12 characters. Every time node is

accessed, instead of accessing the original string to find out the characters, the characters

themselves can be encoded instead of the end index field. The first 24 bits can be used

to store this information. The next 8 bits is used to store the length of the edge (0 to

24). When the node is accessed along with the start information, the characters are also

fetched and this helps us to save memory accesses to the original string.

We analyze the cache miss reduction due to the two improvements, i.e the elimina-

tion of leaf nodes by placing the information in the parent node and the encoding of

character information in the node itself. The table below shows the cache misses in the

basic array implementation with no optimizations and the fully optimized data structure

implementation.
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Figure 4.5: Edge information inside node

(Intel params) Basic Array Impl Optimized

L1 cache misses 38.82% 22.56%

L2 cache misses 97.61% 91.05%

(AMD params) Basic Array Impl Optimized

L1 cache misses 30.26% 21.26%

L2 cache misses 98.72% 91.58%

The experiments had address traces of maximal substring search of 10000 queries run

on a suffix tree with total of 10 million characters long string. We observe for both intel

cache parameters and AMD cache parameters the cache miss percentage is less for the

optimized data structure as compared to the base array implementation. We observe

that the L1 misses show significant reduction, but there is not much reduction in L2

misses. The L2 misses are still high. The most likely reason for this is that the spatial
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and temporal property are exploited at the L1 level itself and the L2 cache is not able to

exploit any locality in the filtered memory accesses. In the next subsection we analyze

the impact of reduced cache misses on speed of execution of the search algorithm.

We can compare this results to the optimal cache miss rate if the sequence of access

for a given query string is already known. This means, we assume that the query string

is already known and in such a case try to align the nodes so that it gives minimal cache

misses. Assuming that every internal node is around 25 bytes and cache line is 128 bytes,

5 nodes can be fitted into a cache line. This implies that one in five nodes will have a

miss and so the cache miss will be around 20% in the optimal case. Also note that the

cache misses in the two tables also include the top portion of the tree being reused from

the caches due to temporal property across query strings. That is the reason why the

L2 cache miss shows around 90% miss, when in theory, for just one query string, there

will be no spatial locality property that can be exploited by the L2 cache and cache miss

would be 100%.

4.5 Padding

In this work, we assume that whenever a node is accessed then the whole node falls

within the same cache line itself. But there may be cases when the node gets loaded in

such a way that one part of the node is in one cache line and the other part is in the

other cache line. To prevent this we use the concept of padding. As the nodes are being

assigned memory space we check to see if it falls withing a cache line or would fall in the

boundary of two cache lines. For the latter case, we allot a padding memory space so

that the node being alloted falls in a new cache line.

The results after padding were similar to the results presented in the previous section.

This means that the number of nodes that fell on the cache line boundaries are small

compared to the total number of nodes.
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4.6 Improvements w.r.t speed of execution

We compare the time taken by different implementations for the search algorithm. The

suffix tree is built over 10MB, 15MB, 20MB string and then maximal substring search

is applied. The time taken for the search algorithm is recorded. The graph in Figure 4.6

shows the details. The different implementations are

• Linked List Implementation

• Basic Array Implementation

• Trellis Implementation

• Optimized Implementation

The trellis implementation is basically a DFS based layout and also has leaf information

in its parent. It was originally developed as a disk layout in [5] and here its used as a

main memory layout for comparison with the rest of the implementations.

The graph clearly indicates that the time taken by the optimized implementation

brings down the execution time by approximately 70% as compared to the linked list

implementation and also performs better than the other implementations. The reduction

has been achieved because of the reduced cache misses.



Chapter 4. Data Structure Modifications 28

Figure 4.6: Execution Time Vs Size of input string



Chapter 5

Conclusions

In this report, we have analyzed the cache consciousness of suffix trees. Different tech-

niques like layout changes, data structure changes were implemented. In layout change,

Creation order layout, Breadth First Layout, Trellis Layout, Stellar layout were experi-

mented with. However the cache line sizes were shown to be too small to exploit spatial

locality for the search algorithms. In data structure changes, first we showed that linked

list implementation though conserves space per node, is not ideal for searching as more

nodes need to be traversed as compared to the array implementation. Three changes

were done to the basic array implementation to make it more cache conscious. The leaf

information was placed in the parent node itself, the null pointers were eliminated and

the substring representing edges were directly encoded in the node itself rather than

placing the offsets to the original string. Due to these changes we obtain around 70%

gain in search time in the optimized version as compared to linked list or basic array

implementation.

As future work, the following points can be considered.

• Grouping of nodes so that only one pointer points to a group of contiguously

allocated nodes

• Other search algorithms can be implemented and checked if they give the similar

results to maximal substring search.

29
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• The implementions can be extended to disk level layouts and checked if the results

hold good for disk to main memory hierarchy

• With reduced sized nodes, the behaviour of different layouts can be experimented
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