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Abstract

Biodiversity research generates and uses a variety of data spanning across diverse do-

mains, including taxonomy, geo-spatial and genetic domains, which vary greatly in their

structural features and complexities, query processing costs and storage volumes. In this

thesis, we present BODHI, a database engine that seamlessly integrates these diverse types

of data, spanning the range from molecular to organism-level information. BODHI is a

native object-oriented database system built around a publically available micro-kernel

and extensible query processor, and offers a functionally comprehensive query interface.

The server is partitioned into three service modules: object, spatial and sequence, each

handling the associated data domain and providing appropriate storage, modeling inter-

faces, and evaluation algorithms for predicates over the corresponding data types. To

accelerate query response times, a variety of specialized access structures are included for

each domain. Our experiments with complex cross-domain queries over a representative

biodiversity dataset indicate efficient evaluation even on off-the-shelf standard hardware.

BODHI features suffix-tree indexes for expeditious processing of sequence similar-

ity predicates. These indexes are well-known to be not easily amenable to persistent

implementation and usage, since their traversal patterns induce severe disk thrashing.

To minimize the impact of this problem, we present a suite of optimizations, includ-

ing: TOP-Q, a novel low-overhead buffer management policy that takes into account

the probabilistic behavior of traversals during suffix-tree construction; and STELLAR, a

layout-reorganization algorithm that minimizes the cost of suffix-link traversals. Through

experimentation on a variety of real genomic and proteomic sequences, we show that the

combined effect of these optimizations results in substantially improved index construction

and search times.

In summary, this thesis presents the architecture and implementation of a holistic and

efficient database engine targeted towards helping biodiversity scientists swiftly advance

the state-of-the-art in their research.
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Chapter 1

Introduction

1.1 Motivation

Biology can be studied at a variety of scales, ranging from molecular structures in indi-

vidual cells to the macro-level interactions at the ecological level. The humongous variety

of the natural patterns thus formed, and the variety of life constitutes the Biodiversity of

the Earth [109]. This diversity is often understood in terms of the wide variety of plants,

animals and microorganisms that occur in nature, and in terms of the associated phy-

logenetic and ecological relationships between them. Biodiversity is the inherent wealth

of a region, as most economies are directly or indirectly dependent on the products of

biodiversity, and more importantly, on the life supporting conditions that it provides.

Thus, understanding of biodiversity is vital from scientific, educational, commercial and

medicinal viewpoints.

Table 1.1 summarizes the estimates on the conservation status of global biodiversity

Estimated number of species 3 – 100 million
Number of species identified 1.75 million
Rate of loss of biodiversity ≈ 104 species per year
Rate of discovery of new species ≈ 104 species per year

Table 1.1: Status of Biodiversity Conservation

1
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from World Conservation Monitoring Center (WCMC) [133] – one of the leading global

organizations building infrastructure for world-wide free exchange of biodiversity data.

These figures indicate that the rate of loss of this precious biodiversity wealth is, at best,

on par with our ability to just discover new species, let alone the ability to effectively

collect, curate and disseminate their information. Hence it is extremely important to

develop effective conservation policies and speed up the species discovery process through

an extensive use of computerization and other advances in technology. There are a number

of national-level and international efforts underway to tackle this challenge.

An urgent need in this regard is to design and deploy information systems that help

the management of a wide range of data associated with biodiversity studies [109]. A

biodiversity information management system has to enable effective and efficient ways

to model, store and manage the taxonomic information of species, their phenetic charac-

teristics, the phylogenetic and other environmental relationships with other organisms in

the biota (the flora and fauna of a region), and the geographical information about the

endemic habitats of species.

With recent advances in rapid genome sequencing of organisms, there is an added

dimension to the study of biodiversity – at the level of micro-level genome relationships.

One can try to infer associations between macro-level characteristics of species based on

their genome-level information and vice versa. For example, if research is being under-

taken into the DNA sequence of an organism to identify genes responsible for a specific

characteristic, then one can utilize the information available for related organisms, which

can be located through the associated taxonomic information. Similarly, accurate phy-

logenetic tree construction and verification – an important task in the understanding

of biodiversity – benefits immensely from the interaction of taxonomic information and

genetic data analysis.

Keeping these developments in view, the study of biodiversity has recently been re-

defined by WCMC to be an integrated study of species diversity, habitat diversity and

genetic diversity. This integrated view has lead to extensions in biodiversity studies, which

traditionally had focused on taxonomic and habitat information, to include genome level
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information. In the process, new branches of biological science such as Molecular Bio-

diversity [84] and Ecological Genomics [124] have been formed. This integrated study

requires combined analyses of large collections of data from disparate domains, and man-

aging such a wide variety of data to enable efficient discovery of inter-relationships is a

serious challenge towards achieving swift advancements in biodiversity research.

1.2 Current Solutions

Storing and managing the enormous amounts of data generated from the biodiversity

research efforts, and analyzing this data to extract nuggets of information, requires the

extensive use of computers. There are tools for individually managing data from each

of the domains involved in biodiversity studies – for instance [87], at our institution,

species data is currently maintained in MS-Excel worksheets on individual computers,

the ecosystem information is managed through the use of spatial data management tools

such as ArcView [43], and the web-based services from global organizations such as NCBI

(National Center for Biotechnology Information) and EMBL (European Molecular Biology

Laboratory) are relied on for querying genetic data.

However, the presence of such a bag of independent tools is no longer adequate, from

both functionality and efficiency perspectives, in the new age biodiversity research which

places increasing emphasis on simultaneously studying the micro-level and macro-level

relationships between biological entities. To illustrate this point, consider the following

example query, which is of interest to modern evolutionary biologists – similar research

questions are to be found in the ecological literature, e.g., in [82]:

Query 1 Retrieve the names of all plant species that have common inflorescence char-

acteristics, share a part of their habitats, and have a high chromosomal DNA sequence

similarity with Michelia-champa1.

Answering the above query requires the ability to perform integrated searches over

taxonomy hierarchies (“common inflorescence characteristics”), recorded spatial distri-

1A fragrant medicinal plant endemic to India and Nepal, also called Michelia champaka.
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bution of species (“share a part of their habitat”), and the genome sequence databases

(“high chromosomal DNA sequence similarity”). Unfortunately, however, due to the lack

of holistic database systems, biologists are usually forced to split the query into component

queries, each of which can be processed separately using independent tools and services.

Further, the results from these individual tools have to be combined either manually or

through the use of a customized tool.

For example, a typical “experience story” for answering the above query, as gathered

from domain experts at our institution [87], would be:

1. Locate all plant species that have inflorescence characteristic common with that of

Michelia-champa, by performing a join over the taxonomy database, stored in a

PC-based relational database.

2. Access the habitat data, stored in ArcView [43], a popular spatial database product,

to find the species that have shared habitat with Michelia-champa, by performing a

spatial join. Then, compute the intersection between the set of species obtained in

the earlier step, and the newly-derived set of species, in order to prune species that

do not share common habitat with Michelia-champa.

3. From the output of Step 2, identify the names of the plant species of interest, and

then perform repeated BLAST [1] searches over (a subset of) NCBI GenBank [41]

DNA sequence database to identify the sequences (and, thereby the species), that

have an MSP (Maximal Segment Pair) score more than a cutoff value. Note that

this final score-based pruning has to be performed externally by the researcher.

Long procedures, such as the above, for answering standard queries are not only cum-

bersome but can also lead to delays in understanding various micro-level and macro-level

biodiversity patterns. Worse, the patterns may not be found at all due to limited hu-

man capabilities – an example of this problem was reported in the molecular biology

study [112], where comparison of sequences “by hand” missed out some of the significant

alignments thereby leading to erroneous conclusions about the functional similarity of the

proteins examined in the study.
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Furthermore, the discovery of a new species involves considerable time to be spent by

the biodiversity researcher on field, collecting characteristics and other important traits of

the species under study. During such field-trips it is of immense help to be able to access

a remote database, to query across multiple domains and pull out data about related

species, possibly through a hand-held device. With the bag-of-tools as described above,

it is extremely frustrating to perform such tasks.

1.3 Holistic Databases for Biodiversity Research

Based on the above discussion, there appears to be a clear need for building an integrated

database system that can be productively used by the biodiversity community. However,

building such a system is highly challenging because the data associated with each of

the subdomains of biodiversity studies – namely, taxonomy, spatial and sequence – vary

greatly in the following characteristics:

1. Structural complexity,

2. Query processing cost, and

3. Storage volume.

For example, while the taxonomy information of species has complex hierarchical struc-

ture, spatial data associated with ecosystems are inherently voluminous and the spatial

operators are computationally expensive. On the other hand, genomic sequence process-

ing is based on specialized pattern recognition and similarity identification algorithms

over DNA or Protein sequences of the species.

As a result of the limited support offered for the resulting complex data processing

requirements in biology, current database systems have been relegated to play the role of

backup stores, with much of the processing being done outside the DBMS by Unix-based

tools. This is primarily due to the lack of holistic database systems that provide a wide

range of functionalities as well as the performance demanded by these applications.
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Thus, in order to cater to the new but critical breed of modern biodiversity research,

data management systems have to address a host of novel design and implementation

challenges which were addressed in isolation in the past. The database community has

also realized the exciting opportunities for novel data management techniques in this

domain – in fact, biodiversity was featured as the theme topic at the 26th International

Conference on Very Large Data Bases (VLDB), 2000 [73].

1.4 Design of BODHI

Biodiversity databases are typically very large, comprising objects of different types and

inter-relationships to form deeply nested hierarchies. Queries that span these hierarchies

need to perform multiple joins and, in many cases, these involve spatial joins or sequence

similarity predicates, that are computationally more expensive to evaluate.

Motivated by the lacuna of a holistic database solution catering to the needs of biodi-

versity researchers, in this thesis we propose the design of BODHI (Biodiversity Object

Database arcHItecture),2 a native object-oriented database system that seamlessly inte-

grates multiple types of data occurring in biodiversity studies. It is built around a pub-

lically available storage manager kernel, and offers a functionally comprehensive query

language. The BODHI system expresses the sample query presented earlier in Query 1,

which spans multiple data domains of biodiversity research, using an extended OQL syn-

tax as shown in Figure 1.1. To the best of our knowledge, BODHI is the first system to

provide such an integrated view of diverse biological domains ranging from molecular to

organism-level information.

A modular schematic of BODHI is shown in Figure 1.2. The SHORE storage man-

ager [19] at the base provides the fundamental needs of a database server such as device

and storage management, transaction processing, logging and recovery management. The

functional core of the system is built over this storage manager, and consists of three

application specific modules, which supply the object, spatial and genomic services. The

2Gautama Buddha gained enlightenment under the Bodhi tree.
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SELECT species2.name FROM

species1 IN PlantSpecies, species2 IN PlantSpecies,

dna1 IN species1.DNAEntries, dna2 IN species2.DNAEntries

WHERE

species1.name = “Michelia-champa” AND

species1.flowerchar.inflochar = species2.flowerchar.inflochar AND

species1.georegion OVERLAPS species2.georegion AND

dna1 BLAST dna2 WITHIN 70;

Figure 1.1: Expressing Multi-domain Query in BODHI

query processor and optimizer of BODHI, which is based on the λ-DB rule-based ob-

ject query processor [38], interfaces with these functional modules and performs query

processing and produces efficient execution plans using the metadata exported by the

modules. The base functionality provided by λ-DB has been significantly enhanced to

take into account the availability of new data modeling and query language features, and

a variety of access-structures in the system. BODHI supports full OQL/ODL query and

data modeling interface for creation of new database schemas, data manipulation and

querying. Finally, the client interface framework and XML publishing engine form the

external interface to BODHI, enabling biologists to construct complex queries through a

form-based interface as well as to graphically visualize the results.

Each of the service modules in BODHI provide appropriate storage, a modeling inter-

face, and evaluation algorithms for predicates over the corresponding data types.

Object Services. In querying over biodiversity data, it is common to specify predicates

over long relationship paths, or over an inheritance hierarchy rooted at a chosen

base type. To efficiently handle these predicates, access methods for both inheritance

(Multi-key Type Index [83]) and aggregation hierarchies (Path-dictionary index [74])

are included in this module.

Spatial Services. This module provides a spatial type system for modeling of spatial

data associated with biological information. Various geometric operators such as
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Figure 1.2: BODHI Architecture

overlap, adjacent, area, etc., are implemented over this type system. The module

incorporates R*-Tree [7] and Hilbert R-Tree [67] indexing to speed up these other-

wise expensive operators.

Sequence Services. This module provides efficient storage of sequence data associated

with species and a suite of operations over it. It implements popular alignment-

based sequence similarity algorithms of BLAST [1] and Smith-Waterman dynamic

programming [113]. To alleviate the response time bottleneck due to brute force

scan adopted by these algorithms, this module of BODHI provides persistent version

of suffix-trees [8], the ubiquitous main-memory sequence indexing structure. The

persistent suffix-tree index provides an accurate indexing solution for a number of

biological sequence querying applications. We are not aware of any other database

system that incorporates persistent suffix-trees as a first class sequence indexing

strategy.

The BODHI system is fully operational and the source code is available under GNU

Public License for further customization and enhancements. The system has been demon-

strated at the ACM SIGMOD International Conference on Management of Data, Paris,
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France, 2004, and in a number of national-level ecological workshops in India, and has

been uploaded by the San Diego Supercomputer Center (SDSC), USA.

1.5 Biological Sequence Indexing in BODHI

A major research challenge that we have tackled in the BODHI system is the issue of

providing high-performance sequence similarity searching. Despite the extensive utility of

sequence similarity searching, there has been very little direct database support for such

operations. In his keynote address at SIGMOD’2001, Gene Myers pointed out that this has

resulted in a missed opportunity in tighter integration of databases in the bioinformatics

research.

By incorporating persistent suffix-trees in BODHI, we reduce the overheads incurred

due to the brute-force scanning of sequence databases, adopted by BLAST and other

popular biological sequence similarity search algorithms. The integration of suffix-trees

involved addressing of two issues associated with persistent suffix-trees: (i) efficient con-

struction of persistent suffix-trees, and (ii) their storage management to improve query

throughput.

1.5.1 Efficient Construction of Persistent Suffix-Tree Indexes

The suffix-tree of a sequence is the defacto index structure used in numerous biological

applications for accelerating queries over sequences [29, 53, 81]. The main attraction of

suffix-trees lies in their linear time and space construction complexity, and in their use

in a number of sequence querying situations, with almost any of the similarity metrics

employed by biologists to compare DNA or Protein sequences.

Although the utility of suffix-trees is well known, their viability is limited to small-size

datasets due to their large space requirements – the best implementation of suffix-trees

imposes more than 12 bytes overhead for every symbol indexed. This is in marked con-

trast to traditional database index structures, which are typically a fraction of the overall

database size. The obvious solution of extending the suffix-trees onto disk is seriously ham-
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pered by the disk-unfriendly nature of suffix-tree construction algorithms [80, 126, 130].

Hence, the popular belief that suffix-tree indexing is not practical over large datasets [89].

In this thesis, we present techniques to significantly improve the performance of tra-

ditional suffix-tree construction algorithms such as [80, 126], in the context of persistent

suffix-trees. Specifically, we consider the impact of the buffering policy employed during

construction and the physical representation of suffix-tree nodes and make the following

contributions:

First, we present a novel buffering policy called TOP-Q, that takes into account the

probabilistic behavior of traversals during suffix-tree construction. This strategy uses

only the path length invariant (formally defined in Chapter 4) of suffix-tree nodes, and

results in a computationally low-overhead policy that outperforms other popular database

buffering policies.

Second, we show that the much preferred physical representation for suffix-trees that

stores sibling nodes in the tree as a linked-list, is extremely expensive in terms of disk I/O

costs. As an alternative, we propose the use of a simple array of pointers at every internal

node, which we show to be more I/O efficient despite the increased space overhead.

A significant advantage of our proposal is that all the existing suffix-tree based bioin-

formatics tools can be migrated to persistent store without having to reinvent or reimple-

ment the algorithms. This is due to the fact that unlike alternate proposals for suffix-tree

building [61, 123], we completely retain all the structural elements of suffix-trees. In

particular, the suffix-links between internal nodes, which play an important role in linear

time construction and subsequent querying over suffix-trees are retained in our technique.

1.5.2 Storage Management of Suffix-Tree Indexes

In most applications of sequence indexing, the construction is over a relatively static data –

for e.g., NCBI GenBank is released only every two months, while the curated SwissPROT

database is released even more infrequently. During this period, there could be millions

of queries on these databases. Enabling practical construction of persistent suffix-trees

is only the first step in their wide-spread acceptance as sequence index structures within
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database systems. In addition to providing efficient means of constructing persistent

suffix-trees, it is also important to devise techniques to ramp up their search performance.

The performance of persistent index structures is measured in terms of the amount

of I/O incurred during searches over them. Popular database index structures such as

B-Trees and R-Trees are designed specifically for use in secondary memory, and such trees

are characterized by their structural balance as well as the sizing and the branch factor

of their nodes designed to exploit the disk pagesize. Unlike such indexes, the structural

properties of suffix-trees are the outcome of the properties of the indexed sequence. They

are typically “tall and skinny” with small-sized nodes and small fanout at every node –

limited by the size of the alphabet of the sequence.

In this thesis, we investigate whether it is possible to optimize the layout of the suffix-

tree with regard to the assignment of tree nodes to disk pages, such that the search

performance over the resulting layout is improved. While layout has been well-studied in

the database literature for access structures such as kdb-trees [103], Quad-trees [107] etc.,

we are not aware of any similar work for suffix-trees.

In the above context, this thesis makes the following contributions:

First, we show through extensive experimental results that standard layouts of per-

sistent suffix-trees optimize the locality of only either the tree-edges or the suffix-links,

resulting in slow performance of suffix-tree search algorithms that utilize both forms of

inter-node connections.

Second, we present a linear-time, top-down layout algorithm called Stellar (Suffix-

Tree Edge and Link Locality AmplifieR) that attempts to achieve the goal of optimizing

the locality of both tree-edges as well as suffix-links. Through empirical evidence we show

the superiority of searching over resulting layout of the persistent suffix-tree.

Finally, we present experimental results to show that searching of suffix-trees without

suffix-links incur more than 2 to 3 times the I/O required when these same searches

are carried out over a linked suffix-tree. These results clearly bring out the need for

maintaining suffix-links in persistent suffix-trees.
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1.6 Thesis Contributions

The main contributions of this dissertation are fourfold:

• First, we present the design and implementation of BODHI, a holistic database

system that seamlessly integrates the spectrum of data types involved in modern

day biodiversity research. In addition to a comprehensive functionality, BODHI is

also equipped with a variety of index structures to enhance the query performance

significantly.

• Second, we present techniques for efficient construction of persistent suffix-trees,

the biological sequence indexes integrated within BODHI. Specifically, we show that

traditional linear-time algorithms for suffix-tree construction can be transparently

scaled to work efficiently for persistent suffix-trees as well, through the use of a

novel suffix-tree-aware buffering policy, TOP-Q, and a careful choice of physical

representation.

• Third, we show how to organize the persistent suffix-tree nodes on disk such that

the overall I/O incurred during search tasks is minimized. We present a technique

called STELLAR that provides improved spatial locality for both suffix-link and

tree-edge traversals, speeding up biological sequence search tasks.

• Finally, we present a detailed experimental evaluation of the performance of various

features of BODHI.

1.7 Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we review pub-

lished related work. Next, in Chapter 3, we describe, in detail, the design and implemen-

tation of the BODHI system. Some relevant background material regarding the suffix-tree

indexing for biological sequences is presented in Chapter 4. Our TOP-Q buffering strategy

for high-performance persistent suffix-tree construction is presented along with a detailed
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performance evaluation over a variety of genomic sequences, in Chapter 5. Moving on to

the search aspect, in Chapter 6, we describe STELLAR, a search optimized storage orga-

nization strategy for persistent suffix-trees. We explore applicability of our techniques for

high-performance persistent suffix-tree indexes over protein sequences, in Chapter 7. A

detailed performance evaluation of the full BODHI system, highlighting the utility of var-

ious indexing schemes available, is presented in Chapter 8. Finally, Chapter 9 summarizes

the contributions of this thesis, and outlines future research directions.



Chapter 2

Related Work

In this chapter, we review the research literature related to the main contributions in

this dissertation – namely, biodiversity information management, efficient construction of

persistent suffix-tree indexes, and storage techniques for high-performance searching over

persistent suffix-trees.

2.1 Biodiversity Information Management

Biodiversity data consists of both macro-level and micro-level information ranging from

ecological information to genetic makeup of organisms and plants. Apart from our work,

we are not aware of any other effort that attempts to combine the complete spectrum

of information, though the need for it is highlighted in a proposal for GBIF (Global

Biodiversity Information Facility) by OECD (Organization for Economic Co-operation

and Development) [104]. This proposal identifies the domain level challenges in building

a global, interconnected data repository of biodiversity information systems and notes

that the urgent requirement in biodiversity studies is a suitable information management

architecture for handling vast amounts of diverse data.

Recently, a group of computer scientists, biologists and natural resource managers

met to discuss the computer science and information technology needs in biodiversity and

ecosystem informatics (BDEI), and the report of the workshop [92, 109] discusses at length

14
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the technological and deployment challenges in this area. One of the key information

management challenges they highlight is the need to efficiently handle the complexity

and variety of biodiversity data.

For a biological data management system to be effective, it is critical that it be able

to manage data at multiple levels of complexity, granularity, consistency and scale. In

response to the wide variety of data management requirements, researchers in each indi-

vidual domain have built their own tools that have vastly varying capabilities in handling

of available data. In the rest of the section, we review data management solutions pro-

posed for each of the individual domains.

2.1.1 Taxonomy Data Management

In the area of macro-level biodiversity information management, there have been many

governmental efforts such as ERIN [13], INBio [88] and some global initiatives such as

Species 2000 [114], the Tree of Life [77], etc. However, the focus of most of these projects

is on the collection, curation and dissemination of taxonomy data. They do not specifically

address the issues of data management, efficient storage and querying, and do not provide

sophisticated query interfaces to perform data analysis.

The Prometheus project [98] addresses the topic of extensible modeling of taxonomic

classification data. Due to the lack of a standardized classification model, taxonomists

arrange organisms into classification hierarchies according to various criteria (for e.g., mor-

phological similarity, or more recently, DNA relationships). Although newer classification

systems appear, it is also important to preserve the earlier classification hierarchies for a

variety of reasons. In order to support this requirement, Prometheus proposes a extended

object-oriented model with built-in graph functionality [99, 100]. Although the goals of

our BODHI system differ from those of Prometheus, modeling extensions proposed in

Prometheus can be easily incorporated into the BODHI object model.

Recently, in [86], authors have proposed an architecture for the analytical needs biolo-

gists in the area of cladistics – i.e., the science of developing and studying the phylogenetic

models of evolution. Their present a normalized data model where phylogenies (or tax-
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onomies) are stored as lists of edges, and use formulations involving transitive traversals

to answer a variety of queries occuring the domain. While we aim at providing a seamless

data integration, it is conceivable to enhance the feature-set of BODHI by incorporating

ideas proposed in their paper.

In [105], authors have noted the applicability of OODBMS (object-oriented database

management systems) for naturally modeling the inherent hierarchical structure of tax-

onomic information. Extensive literature is available on the design and implementation

issues in OODBMS [134], too vast to be summarized here. We provide a brief overview of

two specific indexing issues in this domain, namely, the indexing of inheritance hierarchies

and the indexing of aggregation paths, highlighting on the techniques chosen in BODHI.

Indexing Inheritance Hierarchies. A direct implication of the concept of class hier-

archy or inheritance hierarchy in object-oriented (OO) data modeling, is that on query

evaluation it is necessary to consider the class scope of the query. In other words, the

query could be evaluated on the extent of only one class in the inheritance hierarchy, or

on the extents of all the classes in the hierarchy. There are a number of class hierarchy

index techniques that have been proposed to address this issue, such as CH-Trees [71],

H-Trees [76], Class-division indexing [102], hcC-Tree [115], etc. However, these techniques

typically accelerate only one form of class scoping, i.e., only a single class or all the classes

in the hierarchy. The Multi-key Type Index (MT-Index) [83], chosen as the inheritance hi-

erarchy index in BODHI, provides an elegant approach, based on optimal linearization of

inheritance hierarchies, to efficiently evaluate both forms of object retrievals. In addition,

it can be implemented with relative ease, using a multi-dimensional indexing structure

such as an R-Tree [56], or its variants.

Aggregation Path Indexing. The classes in a OO data model are related to each

other through aggregation relationships, forming a directed graph called aggregation hi-

erarchy representing the nested structure of classes. These class-level relationships result

in complex inter-relationships amongst data objects (instances of these classes). OODBs

typically support queries involving these nested objects, with predicates on either up-
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Figure 2.1: Aggregation Graph and its S-Expression

stream or downstream objects of a relationship path. A number of aggregation path

index structures are available, such as Multiple-index [78], Join indices [129], Nested and

Path Indexes [10], etc. However, many of these indexes efficiently only support either

the upstream or the downstream predicates, and in some cases (such as in the case of

Multiple-index), the inequality predicates cannot be evaluated.

The aggregation path index used in BODHI is based on the Path-dictionary Index

(PDI) [74], which supports efficient computation of all aggregation path queries. The

PDI access structure consists of two parts:

1. Path Dictionary: It is the central data structure which abstracts out the connec-

tions between the objects in the form of a s-expression. The s-expression recursively

encodes all paths terminating at the same object in a leaf class. Given a path

C1C2 . . . Cn the s-expression is defined as follows:

S1 = θ1, where θ1 is the OID of an object in the class C1 or null.

Si = θi(Si−1[, Si−1]) 1 < i ≤ n, where θi is the OID of an object in class Ci or

null, and Si−1 is an s-expression for the path C1C2 . . . Ci−1.

Thus, Si is a s-expression of i levels, in which the list associated with θi contains

recursively the OIDs of all the ancestor objects of θi. In other words, it is an

encoding of all paths terminating at the object θi which is type Ci in the aggregation

path above. Figure 2.1 illustrates a toy aggregation graph between objects of three

classes – A, B, and C, and also the corresponding s-expression.

2. Identity and Attribute Index: These indexes are built on top the path dictio-

nary, to quickly locate the s-expression records of interest in the path dictionary.
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The identity index locate the s-expression(s) in the path dictionary that contains

a given OID. The attribute index is an optional auxiliary index built on attributes

of a given class such that path traversals conditioned on attribute values can be

performed on the path dictionary without accessing the involved object.

PDI reduces the cost of query processing by speeding up both associative search and

object traversals.

2.1.2 Spatial Data Management

A large portion of the data involved in ecological studies comprises of spatial data and

the queries over this data are expensive both in terms of I/O complexity as well as com-

putational requirements. Due to the growth and popularity of Geographical Information

Systems (GIS), database researchers have studied a variety of data management issues

in this area. These include the design of a number of indexing structures for spatial

queries, benchmarks designed to measure the performance of spatial data handling and

the architecture of large-scale spatial database systems – each of which is reviewed below.

Multi-dimensional Indexing. A number of multi-dimensional structures for indexing

spatial data have been proposed, for instance, k-d-b-trees [103], Quad-trees [107], Grid

Files [91], R-Trees [56], and so on (a survey of related structures is available in [40]). In

recent times, R-Trees and R∗-Trees [7] are considered defacto spatial indexes due to their

attractive disk-friendly properties. Most of the modern commercial database systems such

as Oracle and DB2 provide an R-Tree based indexing structure as part of their spatial

extensions. One issue that critically affects the performance of an R-Tree is the technique

used in splitting and merging of nodes and their Maximal Bounding Rectangles (MBRs).

R∗-Trees were proposed to improve the packing of standard R-Trees, through their forced

re-insert strategy – analogous to the deferred splitting in B+-Trees. In [67], a novel

variant of R-Tree called Hilbert R-Tree, was introduced. It uses the ordering of spatial

objects imposed by a space-filling curve, in order to minimize the area and perimeter

of the resulting MBRs, thus improving the quality of packing. Through experiments on



Chapter 2. Related Work 19

a number of real-world datasets, it is shown that Hilbert R-Trees provide significantly

better packing than R∗-Trees, leading to improved query performance.

Benchmarking. In order to compare the performance and functionality profile of

spatial databases, a well designed benchmark suite is essential. In this regard, the

SEQUOIA-2000 [118] benchmark proposal has become extremely popular. SEQUOIA-

2000 takes into consideration the massive size of spatial data, complex data types such

as geometries of spatial objects, and the presence of sophisticated search requirements to

propose a suite of 11 queries and benchmark dataset available at three scales – regional,

national and world level. We use a large subset of these queries in our performance study

of BODHI.

Finally, the design and architectural issues in building a scaleable spatial database

system has been explored in detail as part of the Paradise project [30, 95, 96]. They

propose a variety of performance tuning techniques and functionality enhancements to be

used in spatial databases, and provide a detailed analysis of the system.

2.1.3 Molecular Data Management

The micro-level biodiversity data, or genetic information of various species, has been

growing steadily due to the multitude of genome sequencing initiatives. The specific

data management issues in handling such data have been addressed in quite a few pro-

posals [50, 51]. In all of these proposals, the database management architecture has

been tailored for the specific purposes of the project. Consider the ACeDB (A C.elegans

Database) [32] system, originally proposed for the C. elegans genome sequencing project.

ACeDB is an object oriented data management tool that has many features, including

the handling of missing data and schema evolution, that makes it an extremely popular

software in many sequencing projects. However, despite its popularity in the genome

sequencing community, it cannot be considered for the larger requirements of biodiversity

data handling due to the following reasons: (1) Lack of support for geo-spatial data; (2)

Weak support for database updates; and (3) Lack of recovery mechanisms necessary in
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large data repositories.

In BODHI, we have provided the key strengths of ACeDB (its sequence processing

algorithms and object-oriented basis), and augmented it with the strong database func-

tionalities and related features that are necessary for a complete biodiversity information

repository.

With the publishing of the draft sequence of the complete Human genome [62], as well

as the availability of the complete genomes of many other organisms, the data analysis

requirements have increased both in complexity and scale. As a result, there have been

efforts to integrate the sequence analysis functionality within the database systems to

improve efficiency and to reduce the data movement. The approach taken by IBM’s DB2

is to provide a high-performance implementation of BLAST as a user defined function

(UDF) that can be called from within SQL queries [108]. Similarly, in Oracle 10g, BLAST

and regular expression search features are built into the database system and can be used

as part of SQL queries [116]. Both these approaches result in query language extensions

similar to those proposed in our BODHI system. However, in BODHI we provide, for the

first time, a detailed performance evaluation of biological sequence similarity queries.

2.2 Large-scale Biological Information Systems

The coming together of diverse branches of biology has necessitated the design of informa-

tion systems that present a single common platform for the combined needs of biologists.

Although there have been many proposals for the design of such a system, a majority

of them have focused mainly on the requirements in molecular biology domain. Drawing

on the experience of building, deploying and using such systems, there are a small but

growing number of similar efforts aimed at biodiversity informatics.

Existing biological information integration systems can be classified into the follow-

ing three categories: (i) Navigational integration, (ii) Mediator-based integration, and

(iii) Warehouse integration. In the rest of this section, we provide a brief overview of

each of these approaches and highlight their applicability in the context of biodiversity

information management. We conclude the section by positioning our proposed BODHI
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framework with respect to these approaches.

2.2.1 Navigational Integration

The navigational information integration refers to the creation of authoritative portals

on the World Wide Web (WWW) so that the users can navigate across data sources,

starting their exploration at the portal. Within this there are two distinct approaches:

(i) Link-based integration, and (ii) Collaborative portals.

The link-based integration of data sources closely resembles the users’ mode of access-

ing information on the WWW through the use of search engines. Typically, there is a

centralized portal for starting the search for specific information. Users can express their

search intent through the use of simple keywords through a form based interface, and pos-

sibly restrict their searches to a subset of data sources linked to the portal. The portal also

maintains an index generated by pre-processing the data in the repositories participating

in the integration. The keyword queries are used to lookup this index and generate hy-

pertext links that point to a web-page containing the results at the data repository. Note

that neither the actual data is stored locally nor are the queries evaluated dynamically

at the sources. Some of the initial data integration systems in molecular biology, such as

SRS [35], and in biodiversity information systems such as Species 2000 [114], ENVIS [34]

etc., belong to this category of integration systems.

In contrast, the collaborative portals are centralized data repositories. The data is

maintained and curated through collaborative efforts of number of users around the world

each responsible for a portion of the repository. For simplifying the process of depositing

the data, these systems typically use simple navigational structures and use hyperlinks to

connect different parts of the information hierarchy. The Tree of Life project [77] is based

on this form of information integration.

The main attraction of navigational information integration is the technical simplicity

of its deployment and ease of use. While these have proven to be an initial boon to

biologists, they do not scale with increasing volume of data involved as well as the need for

increased sophistication in query capabilities. It has been pointed out that the “point and
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navigate” paradigm employed for data access in these systems imposes severe functionality

restrictions that limit their effectiveness [26].

2.2.2 Mediator or Wrapper-based Integration

A myriad of data sources serving data in different formats, catering to different aspects of

genomics, biodiversity and GIS information have been already set up. The proliferation

of such specialized data repositories, coupled with continued expansion of existing reposi-

tories, requires techniques to integrate these diverse federated data sources with minimal

intervention.

The wrapper-based integration, also called query shipping approach of data integra-

tion, tries to address this issue by providing a middleware mediator layer that encloses

many data sources. This middleware provides a generalized user interface, thus shielding

the users from having to learn the interfaces and nuances of specific data repositories. For

each data source that participates in this integration, a new wrapper is available which

is responsible for transforming the user queries into the query format of the data source,

and to transform the query results into the generic representation format used within the

middleware.

Due to the lack of integrated database solutions unifying different facets of biologi-

cal information, wrapper-based integration has become extremely popular in molecular-

biology domain. For example, K2/Kleisli [14], DiscoveryLink [57], and TAMBIS [6] use

source-specific wrappers for extracting data from both static sources as well as application

programs such as the BLAST family of similarity search programs. Inspired by this, the

biodiversity community has also started considering similar integration efforts. For ex-

ample, the GBIF (Global Biodiversity Information Facility) [104] effort proposes to use a

world wide net of independent data sources, accessible through a wrapper mediator layer.

2.2.3 Warehouse Integration

As opposed to the query shipping approach of mediator systems, the warehouse integration

uses the data shipping approach. In other words, integration of biological information is
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achieved by extracting, cleaning and curating data from a multitude of sources, made

available through a single repository. Thus, warehousing requires that all the data loaded

from the sources be converted through some data mapping to a standard format before

it is physically stored in the local warehouse.

The main advantage of the warehouse approach is that the system performance tends

to be much better since the query optimization can be performed locally and commu-

nication latency to access various data sources is eliminated. System reliability is also

better since there are fewer dependencies on network connectivity or on the availability of

underlying data sources – data sources may go down, or become overloaded and temporar-

ily unable to answer queries. It is also easier to enforce any inter-database constraints.

Another advantage of warehousing is that while the underlying data sources may contain

errors, often the only feasible way for the integrated view to have correct data is to keep

a separate cleansed copy in the warehouse. Furthermore, the researcher may have addi-

tional information or annotations to add to the integrated view, which is either entered

manually or with the help of a software package guided by a human. The added-value of

corrected and annotated data stored in the data warehouse is significant.

As observed in [58], with pervasive data inconsistency amongst independent data

sources, the ultimate solution is to install a well curated repository of biological infor-

mation. They also propose a Genomics Algebra that integrates the genomics data man-

agement requirements, including the analytics components, in the kernel of the database

system. Apart from this recent effort, the only other warehouse driven approach that we

are aware of is GUS (Genomics Unified Schema) [27].

2.2.4 Design Approach of BODHI

The above mentioned data integration efforts cater mainly to the analytical needs of biolo-

gists. However, there are many situations where simply providing a functional integration

is not sufficient. For example, a group of researchers from multiple biological domains

investigating endemic medicinal plants might not only require functional integration, but

also require (i) efficient storage and query processing, (ii) the ability to create novel infor-
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mation, and (iii) the ability to easily disseminate the data among group members. Thus,

the information management system should not only address the integrated view of di-

verse data as an aid for analytical studies, but also provide effective methods to generate

and curate new information locally.

In order to address these extended requirements, BODHI is designed to provide a

database architecture that can seamlessly and efficiently integrate diverse data types that

are common in biological studies. In addition, BODHI system utilizes XML (along with

domain-specific XML DTDs) to publish data and a standardized query language (OQL)

interface, making it useful in the development of both warehouse and wrapper-based

information integration systems.

2.3 Indexing of Biological Sequences

With the introduction of high-throughput genome sequencing techniques almost two

decades ago, the volume of genomic sequence information is growing at an exponen-

tial rate. Besides the human genome with about 3 billion basepairs 1, complete genome

sequences of many other species have been already sequenced and are available in public

repositories such as GenBank. The number of daily query loads over these data reposito-

ries are comparable to those of widely used search engines, which motivates the need for

developing efficient techniques for the purpose.

Currently popular techniques for sequence-similarity searching over genomic reposito-

ries include: dynamic programming-based Smith-Waterman algorithm [113], FASTA [75]

and BLAST [1]. Of these, the Smith-Waterman method is an accurate search method,

while FASTA and BLAST techniques are based on heuristics that trade precision of results

for speed. The dynamic programming method has a O(|D| ∗ |q|) cost, where |D| is the

number of symbols in the database sequence and |q| is the length of the query sequence.

Although FASTA also has the quadratic worst-case complexity as that of dynamic pro-

gramming, the associated constant factors are much smaller. On the other hand, BLAST

1In genetics, two nucleotides on opposite complementary DNA or RNA strands that are connected
via hydrogen bonds are called a basepair (often abbreviated bp).
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has a time complexity linear in the size of the database, and is currently the most popu-

lar tool for searching genomic repositories. With the rapid growth of repositories, faster

techniques than the currently used tools like BLAST are required for sequence-similarity

searching.

Naturally, there is a growing interest in developing techniques to build indexes for the

sequence repositories, which can be productively used for high-speed searching. Extant

genomic indexing techniques can be classified into the following two broad categories: (i)

Word-based index structures, and (ii) Sequence index structures. In the remainder of this

section, we provide an overview of some of the key secondary-memory indexing techniques

in each of these categories.

2.3.1 Word-based Indexes

In word-based indexing techniques, the sequence is seen to be a collection of (possibly

overlapping) substrings called q-grams. This view is similar to the highly successful bag-

of-words approach for representing text in information retrieval domain [5].

1. CAFE: This technique employs a two-stage process for searching for all similar

sequences in genomic databases [131, 132]. An initial coarse-grained search is done

through the use of a compressed inverted-index built using overlapping substrings

of a fixed length. In the second stage, a computationally expensive fine-searching is

performed on the candidates selected in the first phase to generate a ranked list of

similar sequences. Through an empirical study, it is shown that the CAFE approach

is significantly faster than the popular BLAST [1] and FASTA [75] search tools.

2. ED-Tree: In [122], a novel index structure called ED-Tree was proposed for sup-

porting probe-based homology search algorithms like BLAST. Given a genomic se-

quence, S, a predefined word-length, w, and a segmentation scheme for each word,

they construct a digital search tree based on the segments of the word such that

every root to leaf path corresponds to a word of length w. The leaf nodes con-

tain pointers into the indexed sequence where the w-length word matches exactly.
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In order to reduce the size of leaf nodes, they apply a frame-of-reference compres-

sion scheme after sorting the offset values stored at each leaf node. Experimentally

they show that a homology search algorithm using the ED-Tree can be orders of

magnitude more efficient than BLAST, and is more sensitive.

3. Piers: An indexing application of q-gram based filtering was proposed in [15], where

a subset of q-grams (or piers) are used to filter out the regions of low similarity with

the query sequence, while minimizing the likelihood of false dismissals. For each

sequence s in the data collection, a set of q-grams of length lp are chosen such that

at least k of them are contained in a region of length no less than lmin – a given

threshold on the length of regions of similarity. These q-grams are then indexed

using a compact hash-based structure, and cross-pier similarities are precomputed

and stored in a fast lookup table. Each query sequence is then decomposed into

all its lp-length q-grams, and presented to the pier hash structure, which is used

to determine the piers that are within a short edit-distance from the given q-gram,

and then are further expanded to include piers with larger edit-distance through the

use of precomputed cross-pier similarity table. Due to their two-stage refinement

process that allows for inexact matches of piers, it is possible to eliminate larger

regions of dissimilarity quickly. Through experimental evaluation, they show that

their technique is 2-15 times faster than BLAST.

4. qClusters and c-signatures: In [16], a two-level indexing technique based pri-

marily on the q-gram filtering was proposed. They consider all possible q-length

subsequences on DNA alphabet, and define qClusters to be a partition of these q-

grams into clusters of equal size. At the first level, DNA segments are hashed, based

on the presence or absence of a representative from each qCluster into a compact

in-memory hash table. Next, each DNA sequence is represented using 4q-length

bitmap, where each bit position corresponds to one of all possible q-grams. These

q-signatures are then compacted into c-signatures by replacing c bit positions by the

count of bits set to 1. These c-signatures are organized into a digital search tree,

called c-tree, which forms the second level indexing structure. Their experimental
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evaluation of search algorithm based on this two-level structure demonstrates 2-3

times performance improvement over BLAST.

5. DSIM: One of the obstacles in speeding up DNA sequence search time is the massive

size of DNA data collections. In [17], improvements to substring matching perfor-

mance through a sequence compression technique called DSIM was proposed. They

borrow the ideas from video compression techniques, to compress the sequence data

collection based on the substring edit-distance from a few reference-words. These

reference words are chosen initially as the most frequently occuring substrings, and

are then incrementally updated based on the statistics gathered from query work-

loads, as well as based on the updates to the data collection. Through empirical

analysis, they show that their techniques outperform BLAST in speed, and are

highly competitive in precision.

6. SST: The Sequence Search Tree (SST) proposed in [49], considered a heuristics-

based solution which runs in O(log n) expected time. This technique splits the data

strings into overlapping windows of length W for some pre-specified overlap amount

of ∆. For each such window, they count the number of repetitions of all possible k-

tuples, and store these values in a σk dimensional vector, where σ is the alphabet size.

These vectors are indexed using a hierarchical binary tree constructed by repeatedly

applying a K-means clustering algorithm. The similarity between the query string

and a substring is approximated by using the Manhattan distance between these

vectors. Experimental results show that this technique runs more than 25 times

faster than BLAST.

7. String Join using Precedence Count Matrix: Searching a sequence data col-

lection can be also viewed as an approximate string join problem and [18] proposes

a filter-and-refine algorithm for the purpose. The novelty of their work lies in the

use of a Precedence Count Matrix (or PCM) to efficiently estimate a lower bound

for the edit distance between two sequences. A PCM of a sequence of symbols from

alphabet Σ, is a |Σ| × |Σ| matrix where an entry (a, b) represents the number of
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unique occurances of symbol a preceding b (not necessarily consecutive) in the se-

quence. These PCMs can be computed efficiently, and incur very little overhead due

to the small alphabet-size of DNA. Using the PCM-set for all the suffixes/prefixes

of each sequence, they show that the performance is highly competitive with that

of MRS-indexing (see below).

8. MRS-indexing: This technique, proposed by Kahveci and Singh [66], uses an el-

egant two-level search process based on wavelet transformations. In the first step,

each subsequence of the database is mapped into a 2σ dimensional vector space of

wavelet coefficients. These 2σ dimensional space of points is indexed with stan-

dard multi-dimensional index structures such as R-Trees [56]. Range queries and

nearest-neighbour queries can be efficiently performed using this indexing strategy.

The technique also guarantees that there will be no false-dismissals with the stan-

dard edit-distance metric. Recently, MRS-indexing has been extended for indexing

protein sequences and score matrices [65]. They use the index to prune away un-

promising portions of the data-sequence, thus enabling tools like BLAST to perform

focused computations.

Almost all of the techniques presented above suffer from a serious drawback – they

are directly applicable only when the similarity search is based on the standard edit-

distance or Levenshtein-distance metric. However, more often than not, biologists use

domain-specific specialized alphabet-scoring schemes while performing similarity searches

over the database. For example, in the case of phylogenetic tree construction techniques,

biologists weigh the intra-purine/intra-pyramidine (A ⇀↽ G, C ⇀↽ T) transformations

lower than the transformations across these groups (e.g., A ⇀↽ C/T etc.) [53]. This is

done in order to account for the estimated evolutionary DNA mutation rate, where intra-

purine/intra-pyramidine substitutions are expected to be more likely to occur by chance,

and may not be indicative of the true phylogenetic divergence. As a result, it is necessary

for a database sequence index to be applicable under different symbol-wise edit metrics

as well.
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Furthermore, these techniques are aimed at improving the performance of probe-based

sequence similarity techniques like BLAST, which may not detect all the homologous

regions. In other words, the sensitivity of these algorithms is typically lower than the

Smith-Waterman algorithm.

2.3.2 Sequence Index Structures

In contrast to word-based indexes outlined above, sequence index structures preserve the

sequential nature of strings while indexing. Suffix-tree is a key index structure in this class

of data structures. A rich body of research exists on utilizing the suffix-tree of a sequence

in performing many sequence processing tasks [4, 53, 54]. In fact, suffix-trees, discussed in

the next section, have been considered as the de-facto indexing strategy in bioinformatics

domain. In this sub-section, we present some of the related data structures.

1. Suffix-Array: Manber and Myers [79] proposed the Suffix-array data-structure

that is very space efficient and can be used to perform exact string matching or

substring matching. Conceptually, the suffix-array of a string is an array holding

the indexes of all the suffixes of the string sorted in lexicographic order. Since the

suffix-array holds only the index values of the string, it requires only |D| integers.

When coupled with an additional array holding longest common prefixes of adjacent

elements, the suffix-array can be used to find all occurrences of the query q in

O(|q|+log2|D|) time. This is in contrast to suffix-tree, which can perform the same

query in O(|q|) time.

2. String B-Tree: Motivated by the lack of external memory index structures that

can efficiently handle long text strings, Ferragina and Grossi proposed the String

B-Tree structure [39]. String B-Tree is a novel combination of B-Tree structure

and Patricia Tries for internal-node indices that is made more effective by adding

extra pointers to speed up search and update operations. However, in the biological

sequence indexing, String B-Trees are of limited use since the sequences such as

DNA or Proteins do not possess clearly demarcated word-structures, which are a
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prerequisite for String B-Trees.

3. SPINE: In [90], Neelapala, Mittal and Haritsa presented a novel index structure

called SPINE (Sequence Processing Indexing Engine), which, like suffix-trees, is

based on trie-structures. Conceptually, SPINE can be viewed as a horizontal com-

paction of a trie on the data sequence, in contrast to suffix-trees which vertically

compact the trie to remove all the non-branching nodes. The advantage of SPINE

over suffix-tree is that it avoids the duplication of paths in the tree, thereby reducing

the number of nodes.

It should be noted here that, although in our work we have addressed the issue of

making suffix-trees – a fundamental sequence index structure – practical in a database

setting, it is imperative to consider the application at hand in order to choose the index

structure. For example, there are some applications, where it is sufficient to obtain most of

the alignments under standardized parameter values. In such cases, it might be worthwhile

to consider more space-efficient index structures such as MRS-index or ED-Tree, albeit

their limited ability to support more flexible similarity searches.

2.4 Persistent Suffix-Tree Construction

Since the time Weiner [130] introduced the suffix-tree data structure and a linear time

algorithm for its construction, there has been growing interest in more space- and time-

efficient algorithms for construction of suffix-trees. Conceptually different and space ef-

ficient algorithms to build suffix-trees in linear time have been given by McCreight [80],

and later, by Ukkonen [126]. Further, McCreight also suggested the use of linked-list

implementation of nodes for reducing the space overhead of the suffix-trees. All these al-

gorithms make use of suffix-links to achieve linear-time construction and are implemented

for various constant-sized alphabet datasets.

Suffix-trees provide an accurate indexing solution for searching over large corpora of

DNA or Protein sequences. Initial use of suffix-trees in genomic indexing was restricted

to small length DNA sequences [11], where the suffix-tree could fit completely into main
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memory. In [36, 37], Farach et al. provided the initial theoretical breakthrough in per-

sistent suffix-tree construction. They introduced a novel way to construct the suffix-tree

over a large sequence by following a divide-and-conquer approach (as opposed to the

traditional suffix-at-a-time approach), and used that to show that persistent suffix-trees

could be built with the same I/O complexity as that of external sorting. However, due to

huge constants associated with their results, these results are of only theoretical interest.

They also pointed out that “traditional” algorithms (such as those of Weiner, Ukkonen,

and McCreight etc.), which follow incremental extension of suffix-trees, will be forced to

make random I/Os resulting in bad performance. Their observations on traditional algo-

rithms were made without considering the effects of paging/caching policies that could

be employed during the construction process. In fact, they state at the end of their pa-

per [36], that it would be worthwhile considering the behavior of construction algorithms

in presence of paging, which is a topic addressed in this thesis.

However, until recently, suffix-trees were not considered for persistent construction

and maintenance as linear-time suffix-tree construction algorithms show very poor per-

formance. The main bottleneck in the direct application of these algorithms for persistent

suffix-trees is considered to be the random seeks induced during construction [36]. It has

also been noted in [61] that suffix-links utilized by all these algorithms traverse the suffix-

tree “horizontally”, while edges span the tree “vertically”. Thus, atleast one of them is

expected to result in random access of memory. This is true only if the tree is stored on

disk using depth-wise traversal of either edges of the tree or links of the tree. But this

storage pattern is not feasible during the on-line construction of persistent suffix-trees.

Therefore, in practice, both edges and suffix-links show non-local access patterns. In fact,

even in a recent work [89], it was reported that whenever the dataset is large enough

suffix-trees are not a viable option of indexing, since the memory is too small to hold the

index completely.
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2.4.1 Construction of Suffix-tree without Suffix-links

In [61], a phased construction approach to building suffix-trees was proposed, wherein

they use an asymptotically quadratic algorithm for construction of suffix-trees without

suffix-links. Their technique is based on a mapping of all suffixes of a given database

sequence D to disjoint set of partitions, pw ∈ P , such that suffixes with equal prefix w are

mapped to the same partition pw = {wx|wx = s and s is a suffix of D}. The prefix length,

w, is chosen such that the size of each suffix-tree partition does not exceed the available

main memory size. Otherwise the algorithm fails. Since their phased approach involves

constructing parts of the suffix-tree within memory and writing it to the disk completely,

their empiricaly evaluation showed its superiority over traditional linear-time suffix-tree

construction algorithms. But, their results on the performance of traditional construction

algorithms do not consider the effects of paging policies and the storage management

issues. In fact, in [63], it has been reported that a possible bottleneck could be the choice

of checkpointing scheme of PJama, the underlying persistent mechanism used in [61].

One of the drawbacks of the above approach is that it is not sensitive to the skew

in the distribution of symbols of the sequence. Due to this, the size of the partitions of

the tree that are built within memory could vary resulting in a non-optimal utilization

of available memory. In order to overcome this, an extended partition generation scheme

was proposed in [110]. An initial pass over the complete sequence is made in order to

estimate the cardinality of each partition. Based on these estimates, the prefix-length

used to prepare the partitions is tuned to improve the main memory utilization.

Recently, in [123], a sophisticated partition based technique called Top Down Disk-

based (TDD) was introduced, that takes into account the effects of buffering policies

during the suffix-tree construction. The TDD technique is a well-tuned combination of

the partitioning approach introduced in [61] and an earlier main-memory algorithm called

wotd (write-only top-down) [47] that was shown to incur fewer cache-misses on modern

processors.

All of the above persistent suffix-tree construction algorithms suffer from a major

drawback – the suffix-tree built using these algorithms is completely devoid of suffix-
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links. Although a large number of algorithms over suffix-trees do not exploit the presence

of suffix-links, some of the critical applications of suffix-trees in bioinformatics such as

MUMmer [29] depend on the availability of suffix-links. Therefore it is important to

explore ways to speed up the suffix-tree construction without affecting their structure in

any way – a focus of the research presented in this thesis.

A novel construction of suffix-trees was proposed by Clifford and Sergot [24], wherein

they combine the advantages of partition-based approach with the utility of suffix-link

based construction. It uses an extended definition of a suffix-link, such that the suffix-

links between nodes in the same partition are retained and can be used to speed up the

construction of the suffix-tree partition.

2.5 Storage of Persistent Suffix-Trees

In this section, we briefly summarize the earlier work in the area of disk layout schemes

for skewed search trees. The earliest work that explored in detail, the issue of disk-layout

for improving the search performance of arbitrary search trees is that of Diwan et al. [31].

They provide algorithms for minimization of external path length (defined as the number

of edges to be traversed in a root to leaf path) in digital tree structures such as trie,

k-d-b-trees etc., given a uniform access probability over leaf nodes of the tree. The worst-

case external path length minimization is achieved through a O(N) algorithm that does

a bottom-up packing of nodes into pages. However, for average path-length minimization

problem – which is more relevant here, with a large number of queries being posed over

the search tree – they have a much more complex, dynamic programming based algorithm

that has O(kN2) time complexity, where k is the page capacity and N is the number of

nodes in the tree. Both these algorithms are shown to be optimal. However, empirical

results in [31] indicate that a simpler top-down technique, called SBFS, yields the same

average path-lengths in most of the cases.

Our work differs from these earlier results due to the following reasons:

• The tree traversals considered in [31] are root-to-leaf traversals commonly found
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in the space-partitioned trees such as k-d-b-trees, Quad-trees etc. However, the

common substring searches over suffix-trees entail a more complicated pattern of

traversals – involving both tree-edges and suffix-links.

• Suffix-tree is, surprisingly, a cyclic structure, with two tree structures – one induced

by the tree-edges and the other by suffix-links – overlapping each other. Thus

the optimality results provided in [31], which are applicable only for trees, are not

applicable in the search procedures considered in this thesis.

Another work that is related to the suffix-tree storage organization issue, addressed

in this thesis, is by Gil and Itai [48]. They consider the issue of packing trees efficiently

given the “access weights” associated with each node in the tree and provide an optimal

dynamic-programming-based packing algorithm. However, the time complexity of their

algorithm is O(BN2), where B is the page size (in terms of number of nodes), and N is the

number of nodes in the tree. Although their technique is applicable for suffix-tree packing

as well, the quadratic costs associated with their algorithm makes it seem impractical

in the case of suffix-trees. Additionally, the algorithms of [31] and [48] do not provide

good page utilization (both guarantee only 50% utilization). In the case of persistent

suffix-trees, already burdened with significant space overheads, it is impractical to resort

to techniques that place additional demands on space. Therefore, we focus on achieving

better disk layout schemes that guarantee 100% space utilization.



Chapter 3

The BODHI System

3.1 Introduction

Over the last decade, there has been a revolutionary change in the way biology has come

to be studied. Computer assisted experimentation and data management have become

commonplace in the biological sciences and the branch of Bio-Informatics is drawing the

attention of more and more researchers from a variety of disciplines. A key area of interest

here is the study of the biodiversity of our planet. The database research community has

also realized the exciting opportunities for novel data management techniques in this

domain [73].

The study of biodiversity, as outlined by the WCMC (World Conservation Monitoring

Center) [133], is an integrated study of Species, Ecosystem and Genetic diversity. The

data associated with these domains vary greatly in the scale of their structural complex-

ity, their query processing costs, and also their storage volume. Thus, supporting such

diverse domains under a single integrated platform is a challenge to the data management

tools currently used by the biologists. More often than not, these scientists make use of

different tools for managing and querying over each of the domains, leading to difficulties

in performing cross-domain queries.

In order to address this lacuna, we present BODHI, a prototype system that addresses

many of the issues arising in the biodiversity information management, and in addition,

35
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provides a platform to implement many computational and analytical solutions required

by the biologists. The BODHI system has been designed and developed in collaboration

with domain scientists from the Center for Ecological Sciences and the Department of

Molecular Reproduction, Development and Genetics, at our institution.

BODHI is a native object-oriented system that naturally models the complex objects

ranging from hierarchies to geometries to sequences that are intrinsic to the biodiversity

domain. In particular, it seamlessly integrates taxonomic characteristics, spatial distri-

butions, and genomic sequences, thereby spanning the range from molecular to organism-

level information. To the best of our knowledge, BODHI is the first system to provide

such an integrated view.

BODHI is fully built around publicly available database components and system soft-

ware, and is therefore completely free. In particular, the Shore micro-kernel [19] from the

University of Wisconsin (Madison) forms the back-end of our software, while the λ-DB

extensible rule-based query optimizer [38] from the University of Texas (Arlington) is

utilized for production of efficient execution plans. The system is currently operational

on a Pentium PC hosting the Linux operating system.

Efficient query evaluation is one of the important goals of the BODHI system. To

achieve this goal, a variety of sophisticated access structures, some drawing on the recent

research literature, have been implemented to provide efficient access to various data types.

For example, the Path-Dictionary [74] and Multi-key Type indexes [83] accelerate access

to inheritance and aggregation hierarchies, while the R*-tree [7] and Hilbert R-tree [67]

are used for negotiating spatial queries. To improve the performance of a wide class of

biological sequence similarity searches, BODHI features persistent suffix-tree indexes. In

order to support their efficient construction and querying, a specialized buffer management

policy and an optimized storage technique are built within the sequence processing engine

of BODHI.

The BODHI server is compliant with the ODMG standard [21], supporting an

OQL/ODL query and data modeling interface. To enable easy interfacing with the sys-

tem a web-based graphical query form is provided. Through this graphical interface,
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biologists can construct complex OQL queries involving taxonomy, spatial and genome-

sequence predicates. Further, the server is capable of outputting the result objects in XML

format, enabling client-applications to format the results in their favorite metaphor.

In this chapter, we present the design and implementation of BODHI, a database

system tuned specifically for the needs of the biodiversity research community. To the

best of our knowledge, this is the first such system supporting diverse data domains

ranging from genomic sequences to geographical features, and supporting queries that

span across these domains. We demonstrate the utility of the BODHI system over a plant

biodiversity database, although similar databases over other biodiversity entities such as

animals, fish etc. can be designed as well.

3.1.1 Organization

This chapter is organized as follows: In Section 3.2, we highlight the design goals for a

biodiversity information system. Then, in Section 3.3 we provide a detailed description

of the architecture of BODHI. The salient implementation features of BODHI, including

the flow of query and metadata within the system are presented in Section 3.4. Finally,

we conclude in Section 3.5.

3.2 Design Goals

In this section, we highlight the main features that would be desirable in a biodiversity

information system. These include efficient handling of complex data types, facilities for

bio-molecular sequence similarity, and user-friendly interfaces, described in more detail

below.

3.2.1 Handling of Complex Data Types

Biodiversity data can be broadly classified into the following three categories:

1. Taxonomy Data: Taxonomy is the science of systematic classification of organ-

isms. The taxonomy data typically involves deeply nested hierarchies depicting
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the relationships between various species based on their observable characteristics.

These relationships include Phenetic relationships – that are founded on physical

or directly observable characteristics of the species, and Phylogenetic relationships

– derived from evolutionary theory [94]. Modeling of these relationships could in-

volve the extensive use of aggregate types such as Sets, Bags and Sequences. The

various characteristics on which these relationships depend may vary in time, due

to the discovery of a new class of characteristics, corrections to previously recorded

characteristics, etc.

2. Geo-spatial Data: The study of ecology of species involves recording the geo-

graphical and geological features of their habitats, water-bodies, and ecologically

relevant artificial structures such as highways which might affect the ecology, etc.

As with any spatial information, the volume of the associated data is huge and the

queries involve predicates over geometric relationships that are computationally ex-

pensive to evaluate. In addition, there is a need for the spatial data to be available

under multiple categories (such as administrative-regions, bio-geographic provinces,

forests etc.) at the same time.

3. Bio-molecular Data: The genetic makeup of species is becoming increasingly

important with the completion of a large number of organism and plant genome

sequencing projects. For example, “bio-prospectors” look for indigenous sources

of medicines, pesticides and other useful extracts, which can be discovered from

the biomolecular and genetic composition of species. In addition, the queries over

this form of data are typically complex similarity queries – for e.g., one would like

to retrieve all the DNA sequences in the database that have regions of significant

similarity with a query sequence. Thus, it is important to support modeling and

efficient querying of this type of data.

The above data-types have complex and deeply-nested relationships within and be-

tween themselves. Further, they may involve complex aggregate structures such as se-

quences and sets in their relationship paths.
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3.2.2 Bio-molecular Sequence Similarity Search

The molecules that are of primary interest in biodiversity are DNA and Proteins. DNA

is represented as a long sequence based on a four nucleotide alphabet. There are regions

in the DNA sequence, called exons, which contain the genetic code for the synthesis of

Proteins. The proteins are long chains of 20 amino acids. Each protein is characterized

by its amino acid patterns, and is responsible for various functionalities in a cell which,

in turn, determine the characteristics of the organism or plant.

The similarity between two genetic sequences is a measure of their functional similarity.

Analysis of DNA and Protein sequences from different sources gives important clues about

the structure and function of proteins, evolutionary relationships between organisms, and

helps in discovering drug targets.

As we mentioned earlier, there are a number of popular algorithms, such as Smith-

Waterman, BLAST [1], FASTA [75] etc., for performing similarity searches over genetic

sequences. Researchers and bio-prospectors frequently search the database using these

algorithms to locate gene sequences of interest. However, the implementation of these

algorithms is typically external to the database, making them relatively slow. It there-

fore appears attractive to consider the possibility of integrating these algorithms in the

database engine. In fact, two of the leading commercial database vendors, IBM and

Oracle, have recently enhanced their database products by providing BLAST homology

search extensions to their query repertoire [108, 116].

3.2.3 Usage Interface

As with all other scientific communities, the biodiversity community relies on timely

knowledge dissemination. Therefore, supporting access through the Internet is vital for

maximizing the utility of the information stored in the database.

Typically, biodiversity data is autonomously collected and managed by individual

research institutions and commercial enterprises. In order to improve data availability, it is

necessary that such localized and autonomous data repositories be able to exchange data.

The current state of information exchange amongst various biodiversity data repositories
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is not very satisfactory [104]. However, with the advent of XML, many research groups

are proposing DTDs in individual fields of ecology and genetics [3, 12]. A biodiversity

information system should support these DTDs for handling data over heterogenous set

of repositories.

It is also imperative to have a good visualization interface for the results produced

by the system since (a) the end-users are biologists, not computer scientists, and (b) the

results could range from simple text to multidimensional spatial objects.

Finally, most of the research in biodiversity is done by small teams of researchers

who work with low budgets and are unable to afford high-cost data repository systems.

Therefore, solutions that are completely or largely based on public-domain freeware which

can be hosted on commodity hardware are essential for these groups.

3.3 Architecture of the System

As mentioned earlier, biodiversity data is inherently hierarchical and has complex rela-

tionships. In order to enable natural modeling of these entities and their relationships,

BODHI is designed as an object oriented database server, with OQL/ODL query and data

modeling interfaces.

The overall architecture of BODHI is shown in Figure 3.1. The Shore [19] storage

manager at the base provides the fundamental needs of a database server such as de-

vice and storage management, transaction processing, logging and recovery management.

The application specific modules, which supply the object, spatial and genomic services,

are built over this storage manager and form the functional core of the system. The

query processor, based on theλ-DB extensible rule-based query processor and optimizer,

interfaces with these functional modules and performs query processing to produce effi-

cient execution plans using the metadata exported by the modules. BODHI supports full

OQL/ODL query and data modeling interface for creation of new database schemas, data

manipulation and querying. Finally, the client interface framework and XML publishing

engine form the external interface to BODHI.

The BODHI server is partitioned into three service modules: Object, Spatial, and



Chapter 3. The BODHI System 41

Sequence

Spatial Data Model Sequence Data Model

Similarity

Search

Client Interface Framework and XML Publishing Engine

Spatial

Methods Aggregation
Inheritance and

Indexes

Geometric

Indexes

Storage Manager (SHORE)

Taxonomy Data Model

R*−Tree,
Hilbert
R−Tree etc.

Intersects,
BLASTOverlaps,

Indexes

MT−Index
Path−Dictionary Index

Suffix−TreeS
er

vi
ce

s
S

eq
u

en
ce

O
b

je
ct

S
er

vi
ce

s

S
p

at
ia

l
S

er
vi

ce
s

DB)(λ−Query Processor

Figure 3.1: BODHI: Schematic of Architecture

Sequence, each handling the associated data domain. The service modules provide ap-

propriate storage, a modeling interface, and evaluation algorithms for predicates over

the corresponding data types. In the remainder of this section, we describe these core

database components as well as the query system and the user interface modules in more

detail.

3.3.1 Object Services

While the Shore storage manager handles basic object management, it is necessary to

extend the basic data type system to model spatial and genome sequence data primitives.

The type-libraries necessary for these extensions are bundled into the object services

component of the server.

The data modeling language of BODHI extends the standard ODL [21] by introduc-
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Figure 3.2: A Sample Plant Biodiversity Object Model
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ing new primitives for modeling spatial and sequence data. These primitives can be

used in conjunction with standard data types provided by ODL and various relationships

between objects can be easily modeled. The schema definition enables objects to be inter-

related through inheritance hierarchies and object-relationship paths. The queries over

the database consist of both value-based queries and also on the context of the object in

the relationship graph and the position of its type in the associated class hierarchy.

Indexing the Relationship Paths

Referring to the UML-diagram [127] of a sample plant biodiversity schema given in Fig-

ure 3.2, we see that the relationship hierarchy between objects in biodiversity database

schema can be arbitrarily deep. Further, it is possible to have recursive relationships, for

example, the Predator-Prey relationship among Species. Queries over such relationship

graphs can have either the ancestor class or the nested class, as the predicate class. To

illustrate, consider the following pair of queries:

Query 2 Identify the PlantSpecies based on one or more of its IdentCharacteristics.

Query 3 Retrieve all IdentCharacteristics of a given PlantSpecies.

In Query 2, we need to scan for object relationship path(s) culminating at the specified

characteristic, and then locate the species that form the root(s) of that(those) path(s).

Such queries are called TP (Target-Predicate) queries, following the terminology of [74].

On the other hand, in Query 3, the predicate classes are ancestor classes (PlantSpecies)

and the target classes are nested classes (IdentCharacteristics). These types of queries

are called PT (Predicate-Target) queries in [74].

To efficiently handle both PT and TP queries, BODHI implements the Path Dictionary

Index (PD-Index) [74] approach. The PD-Index consists of two parts: the path dictionary

which supports the efficient traversal of the path, and the identity index and attribute

index which support associative search. The identity index and attribute index are built

on top of the path dictionary.
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Conceptually, the path dictionary extracts the compound objects, without their prim-

itive attributes, to represent the connections between these objects. Since primitive at-

tribute values are not stored in the path dictionary, it is much faster to traverse the nodes.

In order to support associative search based on attribute values, PD-Index provides at-

tribute indexes which are built for frequently queried attributes. When the identifier of

an object is given, the path information is obtained using the identity index built over

the path dictionary.

The PD-index supports both forward and backward traversals of the hierarchy with

equal ease; further, its performance evaluation in [74] indicated significantly improved

access times. A limitation, however, is that it only handles 1:1 and 1:N relationships.

Since typical schemas of biodiversity database include aggregations of N:M cardinality,

and structures such as sets, bags and sequences in the aggregation path, BODHI provides

an extended implementation of the PD-index to handle these constructs.

Indexing the Inheritance Hierarchies

Based on the context, the scope of queries over inheritance hierarchies in the biodiversity

domain can be either limited to the immediate objects of the predicate class (i.e. single-

class query) or can be extended to include all objects of the sub-hierarchy rooted at the

predicate class (i.e. class-hierarchy query). Referring again to the schema of Figure 3.2,

consider the following query:

Query 4 List the names of all PlantSpecies associated with a GeoRegion.

We have two possible semantics for this query: (i) search in the complete inheri-

tance hierarchy rooted at PlantSpecies and return objects of type PlantSpecies as well

as MedicinalPlants associated with the given GeoRegion, or (ii) search objects of only

PlantSpecies type associated with given GeoRegion, without searching amongst objects

of type MedicinalPlants.

To efficiently support both forms of the query, the Multikey Type Index (MT-

index) [83] approach is used in BODHI. The basic idea behind MT-index is a mapping
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Figure 3.3: Spatial Data model in BODHI

algorithm, called Linearization Algorithm, which maps type hierarchies to linearly ordered

attribute domains in such a way that each sub-hierarchy is represented by an interval of

this domain. Using this algorithm, MT-index incorporates the type hierarchy structure

into a standard multi-attribute search structure, with the hierarchy mapped onto one of

the attribute domains (type domain). This scheme supports queries over a single extent

as well as over extents of all the classes under the inheritance subtree. Further, by extend-

ing the number of dimensions in the index, multi-attribute queries can also be supported

easily.

Apart from its elegant transformation of the type-hierarchy tree into a linear path, a

major attraction of the MT-index is that it can be implemented using any of the multi-

dimensional indexing schemes. In particular, BODHI implements them using the R∗-Trees

supported natively within Shore.

3.3.2 Spatial Services

Moving on to the next data domain, Spatial (or geographic) data, in both vector and

raster formats, constitutes the bulk of the biodiversity information. Due to the inherent
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complexity of spatial operations (such as overlap, closest, etc.), combined with large

volumes of data, spatial query processing is considered by ecologists [87], to be a major

bottleneck in the expeditious processing of biodiversity queries. The Spatial Services

module provides operations over an underlying Spatial Data Type (SDT) library, as well

as efficient spatial indexing and join algorithms.

Spatial Data Types

BODHI provides a set of spatial data primitives to represent single spatial entities such

as country, state, forest, river, etc., as well as to represent interrelated collection of spatial

objects such as “Political map of India”, which can be modeled as a topologically related

collection of polygons, each representing a state. The standard primitive type library of

ODL is extended with these data types to enable users to include spatial data definitions

in their schema descriptions.

The spatial model of BODHI is based on the ROSE Algebra [55], and provides two

categories of primitives: Simple Primitives and Compound Primitives. The simple prim-

itives enable modeling of single objects in space, and includes types for Point, Polyline

and Polygon. The compound primitives, on the other hand, are used to model spatially

related collections of objects. There are two compound primitives: Layer and Network,

for modeling collections of Polygon and Polyline, respectively. Figure 3.3 gives the class

diagram of the spatial data model of BODHI.

Operations on Spatial Data

Spatial queries consist of selecting objects which satisfy some spatial relationship(s).

There are three classes of such spatial relationships,

• Topological relationships, such as adjacent, inside etc. which are invariant under

geometrical transformations like translation, scaling and rotation.

• Direction relationships, such as above, north-of etc.

• Metric relationships, that are based on the distance measure between spatial objects.
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Figure 3.4: Spatial Relationships in BODHI

Of all the relationships in these three categories, [55] observes that only six relation-

ships: disjoint, in, touch, equal, cover and overlap, are the most important relationships

in geo-spatial applications. These relationships are illustrated in Figure 3.4. Even though

the figure shows these relationships between only polygonal objects, they are well-defined

over the complete spectrum of SDTs, as well as between different types (for e.g., between

line and polygon). Accordingly, the Geometric Algorithms part of the Spatial Services

module provides these six relationships. These algorithms form the core of behavioral

abstraction of the spatial primitives described above.

Spatial Indexing

For spatial data, Shore natively supports the R∗-Tree [7], which is the most popular

spatial access method since it achieves better packing of nodes and requires fewer disk

accesses than most of the alternatives. However, a problem with the R∗-Tree is that

even though it has tight packing to begin with, its structure may subsequently degrade

in the presence of dynamic data. To tackle this, we implemented the Hilbert R-Tree [67],

which is designed for handling dynamic spatial data while maintaining good packing of

the index structure. It makes use of a Hilbert space-filling curve over the data-space to

linearize (i.e. obtain a total ordering of) the objects in the multi-dimensional domain
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space. A performance evaluation in [67] shows this structure to provide better packing in

the presence of dynamic spatial data and, as a consequence, better query performance.

3.3.3 Sequence Services

In modern biodiversity studies, analysis of genetic data in conjunction with the macro-level

information plays an important role [82, 124]. The Sequence Services module interfaces

with the storage manager to provide efficient storage of genomic sequences and sequence

similarity search algorithms over them.

Biological Sequence Primitives

The Sequence Services module supports two primitive types: DNA and Protein to rep-

resent the sequence information of associated molecules. In order to provide a compact

physical representation, the DNA alphabet of 4 nucleotides is encoded using two bits, and

the Protein sequence alphabet of 20 is encoded in five bits. The behavioral part of this

data model, provides functions for translation of DNA sequence into a Protein sequence

and vice-versa, the generation of complementary DNA, and extracting substrings from

DNA or Protein sequences.

Similarity Search

Comparison of sequences in order to locate similar subsequences is an important operation

in computational biology, and it forms the basis for many other complex operations such

as phylogenetic tree construction and multiple sequence alignment.

BODHI provides two algorithms for sequence similarity searching – the BLAST al-

gorithm, and the Smith-Waterman dynamic programming algorithm, both of which are

usable as part of an OQL query. The similarity score is computed using a set of default

cost metrics, (i) PAM-120 [28] metric for proteins, and (ii) the weighted edit distance

metric used in [1] for DNA sequences (+5 for matches, -4 for mismatches).
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Biological Sequence Indexing in BODHI

Sequence similarity search algorithms, such as BLAST and Smith-Waterman, typically

require a full scan of the sequence database for each query context. Not long ago, even

spatial data processing required such brute-force scanning and evaluation of topological

predicates on all spatial objects in the database. However, with the evolution of efficient

spatial index structures such as R∗-trees and Hilbert R-Trees etc., spatial data processing

has become extremely efficient. Similarly, in the domain of biological sequence processing,

the suffix-tree datastructure is considered a defacto sequence index forming the backbone

of a number of sequence algorithms.

The Sequence services module in BODHI supports these powerful sequence index

structures, in a scaleable form, as Persistent Suffix Trees which can be used to accelerate

a large class of sequence processing queries and sequence similarity searching [53]. As

part of this functionality, this module integrates a novel specialized buffer management

policy for persistent suffix-trees, called TOP-Q (topic of Chapter 5), and an optimized

storage scheme called STELLAR (focus of Chapter 6).

3.3.4 Query Processor

The core of the query processor is λ-DB, a freely available query processor and optimizer

for ODL/OQL [38]. λ-DB uses monoid comprehension calculus, which is a generalization

of list comprehension in functional languages, to represent queries in an intermediate form.

The monoid algebra, similar to the nested-relational algebra, serves to translate between

comprehensions and physical plans and the algebraic operators. The translations from

the calculus form to the physical plan is done through a combination of cost-based as well

as rule-based optimization phases, which involve query rewriting, operator reordering and

physical operator selection, similar to relational query processing engines.

The query language for BODHI is based on the OQL recommendation from the ODMG

standard [21], which has declarative query syntax closely resembling the standard SQL.

However, the basic OQL standard does not provide integrated support for primitives and

operators from spatial and sequence domains. The OQL syntax in BODHI is enhanced
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with addition of new operators such as OVERLAPS, ADJACENT, BLAST, etc. With the help

of these extensions, we can express the multi-domain query, Query 1, described in the

Introduction chapter, as follows:

SELECT species2.name FROM

species1 IN PlantSpecies, species2 IN PlantSpecies,

dna1 IN species1.DNAEntries, dna2 IN species2.DNAEntries

WHERE

species1.name = “Michelia-champa” AND

species1.flowerchar.inflochar = species2.flowerchar.inflochar AND

species1.georegion OVERLAPS species2.georegion AND

dna1 BLAST dna2 ≤ 70;

The above query illustrates the use of object relationship path-based joins

(species.flowerchar.inflochar), geometric predicates on spatial objects (OVERLAPS), as

well as sequence similarity search functionality (in the form of BLAST). The BLAST

algorithm provides two parameters on which the output can be filtered – the alignment

score, which is illustrated in the above query, and the p-value, the estimated statistical

significance of the alignment. It should also be noted that the sequences that are involved

in the BLAST similarity search computation can be filtered by providing additional pred-

icates on the sequence attributes. It is worth noting that, our query syntax of BLAST

homology searching closely resembles the proposed SQL extensions by Oracle-10g [116].

Along with the extensions to the query language, the query optimizer is also signifi-

cantly extended to generate efficient plans for predicates involving these special operators.

The query processor contains, in addition to the techniques available in generic database

systems, specialized optimization schemes for:

• Spatial operators, when spatial indexes are available on predicate attributes.

• Relationship path traversals.

• Queries over a type hierarchy of the data model.

In addition, the presence of user defined methods in the synthesized object types (such

as, the Area function of a Polygon object), forms an obstacle in optimal plan generation,
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since their costs are not directly available to the query optimizer. A variety of strategies

for handling this situation have been proposed in the literature [52, 69]. In BODHI, we

have extended the ODL to allow optional definition of cost functions, and functionally

equivalent methods. These extensions enable the cost-based optimizer to compute the

costs associated with each of the equivalent methods, before choosing the best execution

strategy. In addition, the ability to define index on derived values, or return values of

class methods, is also provided to further improve the query evaluations.

3.3.5 Client Interface Framework and User Interface

Although BODHI provides a powerful querying language, it is cumbersome for the in-

tended end-users of the system, namely, the biodiversity researchers, to interact through

the OQL syntax. Typically these domain-scientists do not have any experience of using

such languages and are reluctant to learn them. Therefore, it is essential to provide a

user interface that not only renders the results of the query graphically, but also allows

construction of complex OQL queries through a simple form-based interface.

We have developed a simple framework, using a host of technologies including HTML

Forms, CGI scripting, JavaScript and Java, that addresses this need. The query interface

is provided as a form that the users can fill to build OQL queries visually. Currently, it is

capable of building complex OQL statements which involve multiple levels of joins, spatial

join predicates like OVERLAPS, CONTAINS and INTERSECTS, and sequence similarity

through BLAST. Figure 3.5 provides a snapshot of the query interface of the BODHI

system.

In addition to the input interface, the results of the query are transformed into an

XML tagged format, which can be rendered using the visualization metaphor of choice.

Figure 3.6 provides a sample XML tagged output generated by BODHI.
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Figure 3.5: Snapshot of the Query Interface
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Figure 3.6: A Sample XML Output from BODHI
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Figure 3.7: BODHI: Implementation Schematic

3.4 Implementation

In any large system such as BODHI, performance gains are obtained not only by the

choice of supported access structures themselves, but also by their careful placement in

the implementation. One option is to achieve performance improvements by supporting

every feature of the system at the lowest level – for example, by implementing at the

Shore storage manager level. However, this becomes a huge effort to extend and improve

the system by addition of new basic types, new access structures, etc. At the same

time, if we provide all the additional features at layers external to the storage manager

then the overall performance could suffer. Therefore, we considered these two competing

requirements of the system carefully while placing the implementation of the services,
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and aimed to optimize extensibility while minimizing the performance overhead on the

system.

One of the strong features of the Shore storage manager is the presence of a framework

to extend the functionality of the server, called Value Added Server (VAS) framework.

This feature has been utilized in BODHI to provide additional database server-side fea-

tures including path-dictionary index, and genome sequence storage and retrieval algo-

rithms.

The schematic in Figure 3.7 shows the placement of various components of BODHI in

the overall system implementation. The gray filled boxes in the figure indicate the signif-

icant enhancements and additional features added to the components used in BODHI. In

the rest of this section, we describe the implementation rationale in the context of each

service module.

3.4.1 Object Services

As mentioned previously, this module bundles the Path-Dictionary and Multi-key Type

indexes over object aggregation and type hierarchies, respectively. The Path-Dictionary

structure is implemented as a VAS, which maintains the path-dictionary on a data repos-

itory – with its own recovery and logging facilities – independent from the main database.

This gives the query processor an opportunity to scan the path-dictionary repository in

parallel to the other data scans active at the same time. Further, the locking overheads

are distributed over different storage management threads. The Multi-key Type index,

on the other hand, is instantiated as an R∗-Tree, which is available for spatial indexing,

with linearized type system as a dimension and each object treated as a “point” in the

spatial sense.

Path-dictionary Implementation

While implementing the Path-Dictionary-based indexing (introduced in Section 2.1.1) for

aggregation path queries, we found that the index structure as presented in [74] cannot

be used in a stream based query processor such as λ-DB, without breaking the pipeline
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structure and materializing the query results at that join node. We addressed this prob-

lem by inverting the storage of paths to proceed from the top of the aggregation graph

instead of the suggested bottom-up approach. Thus, the s-expression definition for a path

C1C2 . . . Cn is modified to

Si = θi(Si+1[, Si+1]) for 1 < i ≤ n.

Note that the above representation is inverse of the original definition of s-expression

scheme presented in Section 2.1.1. While this inversion may partially reduce the effec-

tiveness of the path-dictionary, the major benefit of avoiding the huge cost of joins over

object extents is retained.

We have extended the implementation given in [74] to support the additional require-

ments of allowing N:M relationships, as well as bags and sequences in the aggregation

path. The main idea behind our extensions for the of N:M relationships is to break them

into multiple 1:N relationships. But a straightforward application of this idea introduces
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complications in maintenance of s-expressions used for compactly representing the object

relationships.

Supporting N:M relationships: Consider a N:M relationship between classes A and

B, with C representing the remaining downstream objects (successor objects), as

shown in Figure 3.8(a). In other words, the figure represents the aggregation path

AB〈C1C2 . . .〉, where N:M relationship is between A and B, and C represents the

path within the angular brackets, without loss of generality. If we break this into

multiple 1:N relationships, the graphs and the corresponding s-expressions look as

in Figure 3.8(b). Note the redundancy in the corresponding s-expressions: The

children of B1 are replicated in the s-expressions of both A1 and A2. This problem

can be solved by using a flag in the entries of the s-expression. This flag denotes

whether the entry is a direct reference or an indirect reference. All the descendant

entries of an OID will be stored only in the entry which contains direct reference to

that OID. This modification is shown in the form of a graph in Figure 3.8(c) with

corresponding s-expressions. Note that the suffix for each entry denotes whether it

is a direct reference or an indirect reference. Though this modification duplicates

(with different flag values) the B1 entry, we avoid duplicating the children of B1,

thus saving space.

Extensions to support Bags and Sequences: The previous modification works fine

for storing ordinary references and sets. But in the presence of bags, further redun-

dancy is possible. The example for this is shown in Figure 3.9(a) – where classes

A and B are related through a N:M multi-relationship and C represents the down-

stream objects from B. The number on the edge from a node, a, to another node,

b, denotes the number of times b appeared as a reference in the bag of a. The cor-

responding s-expressions for this graph using the above implementation are given

in Figure 3.9(b). Note that the entry of B1 is repeated n times in each expres-

sion, where n denotes the number of times B1 is referenced in the parent object.

This replication can be eliminated by introducing one more field in the entry of

s-expression which stores this replication count. This reduces the storage overhead
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Figure 3.9: Representing N:M Relationships in presence of Bags

for storing bags since OIDs are not duplicated. The s-expressions with this modifi-

cation are shown in Figure 3.9(c). The implementation also supports sequences by

maintaining the order of the children of a given parent in the s-expressions.

3.4.2 Spatial Services

In addition to the R∗-Tree provided by the Shore storage manager, the spatial services

module provides the Hilbert R-Tree which is intended for use with highly dynamic spatial

workloads. This index could be implemented as a VAS external to the database, utilizing

the Shore SM interface which allows introducing new logical index structures. With this

approach, however, no page-level storage control is provided, thereby making it infeasible

to implement index structures such as the Hilbert R-Tree that rely on physical packing

of data for performance benefits. We were thus forced to implement the Hilbert R-Tree

by refactoring the existing R∗-Tree implementation.

We had the option of implementing the spatial type system, illustrated in Figure 3.3,

either as part of the basic type system (similar to the support of types like integers,

strings, references, etc.) or at the same level as a user defined type system. In the former

approach, we do gain the storage efficiency and low object creation overhead, but we lack

the extensibility and ease of implementation available in the latter approach. The final
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choice was to go for an extensible type system, that is, to provide the spatial type system

(along with sequence type system – discussed below), as a user level library which can

be modified and extended by the database administrator without having to work on the

storage manager layers.

3.4.3 Sequence Services

The type system of the Sequence Services, consisting of DNA and Protein types, are

provided in the same way as the spatial types, which we have described above. In addition,

the DNA sequence type has extra requirements for its storage. The DNA sequences are

usually very long – few thousands to millions of basepairs, and consist of only 4 symbols.

Instead of storing them as character strings, we store them in a compressed form and

perform queries over the compressed records rather than on the character strings. The

efficient storage of the raw sequences is implemented as a separate VAS which provides

advantages similar to those mentioned in the Path-Dictionary implementation.

Implementation of BLAST

The BLAST algorithm, first described in [1], has evolved over years into a powerful suite

of tools for biological sequence analysis. Further, the BLAST software is not typically

designed to work with a fixed memory budget – it utilizes the full virtual memory space

available in the system. In BODHI, we implemented the BLAST algorithm in its original

form (i.e., BLAST version 1.0), without associated components such as filters for repeat

and low complexity regions, and to work within the buffer space limitation specified for

the database instance.

In the first phase of the algorithm, we build an inverted index over |Q| − W + 1

substrings of length W over the query string Q. Using this inverted index, we locate all

the initial “hits” – W -length exact matches – over the database sequence. These hits are

extended in both directions (without introducing gaps) until the weight of the alignment

stays within half the maximum weight found so far. Unlike typical implementations of

BLAST algorithm, the whole data sequence is not brought into the memory. Only those
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pages of the data sequence that are accessed during the extension phase are read into

the buffer space, and are managed through a global buffer manager using the CLOCK

replacement policy [101].

3.4.4 Query Processing
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Figure 3.10: Schema Definition and Query Flow in BODHI

The query processor of BODHI integrates the features provided by the service mod-

ules through extended ODL/OQL for modeling and querying the database. In addition,

it optimizes the queries using the metadata and index information. λ-DB performs all

optimizations on the query at compile-time, producing a corresponding executable, re-
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sulting in extremely fast query executions. The schematic representing the flow of schema

definitions and queries over the database, is illustrated in Figure 3.10.

Schema Definition

The schema is defined, as already mentioned, using ODL – with extensions necessary for

BODHI. The schema declarations are first converted into SDL, before getting compiled

into an C++ header file. During this phase, the Schema Manager of the query processor

obtains the metadata needed for typechecking and optimization of queries and maintains

it in the database. The implementation part of the schema declaration is abstracted into

a C++ code and is available for compilation into a linkable library.

Query Flow

The query strings obtained are type checked, parsed and compiled into C++ code with

execution plans generated after incorporating the rules specified in the query optimizer.

The type library of spatial and sequence data primitives and the implementations of

various operations defined over them, which are precompiled into linkable libraries and

header files, are linked to generate the executable of the query.

This executable contains implementations for interacting with the Shore storage man-

ager, Value Added Servers of Object and Sequence Services, and the implementation

needed for transforming query results into interchangeable format.

3.5 Conclusions

In this chapter, we presented the design and implementation details of the BODHI

database system that addresses a number of datatype integration and performance issues

arising in the biodiversity information management. To the best of our knowledge, BODHI

is the first system to provide an integrated view from the molecular to the organism-level

information, including taxonomic data, spatial layouts and genomic sequences.

BODHI is operational, completely free and is built around publicly available software
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components and commodity hardware. In order to provide efficient access to different

data types, BODHI incorporates a variety of indexing strategies taken from the recent

research literature. Further, BODHI is equipped with a specialized sequence indexing

solution in the form of a persistent suffix-tree, that helps to perform many biological

sequence processing tasks efficiently.



Chapter 4

Background on Suffix-Trees

NOTE: In this chapter, for the purpose of completeness, we briefly present

background material on suffix-tree structures. An excellent survey of suffix-

trees and their biological applications is available in the textbook written by

D. Gusfield [53]. Readers familiar with suffix-trees can skip this chapter, and

directly move on to Chapter 5.

4.1 Introduction

With the advent of high throughput genome sequencing techniques, biological sequence

data is being generated at speeds exceeding the growth of modern day computational

speeds. As per the latest statistics published from GenBank [42] – the global annotated

collection of all publicly available DNA sequences – 37,893,844,733 (37 billion) basepairs

in 32,549,400 sequence records are deposited in the databank. This is expected to grow

exponentially with ever expanding applications of genome sequence analysis. One of the

most important computational tasks on this voluminous amount of sequence data is that

of efficiently locating all the matches in the database to a given pattern sequence. In a

recent survey of bioinformatics practitioners [117], it was reported that more than 50%

of their tasks involved sequence similarity search, pattern search and sequence retrieval

from sequence databanks such as the GenBank.

63



Chapter 4. Background on Suffix-Trees 64

In these tasks, the matching criteria could be either exact or inexact based on a

similarity metric. The similarity metric associated with inexact matching, or similarity

matching, is typically based on special cost measures such as BLOSUM [59] or PAM [28]

family of costs for proteins and weighted edit-distance costing for DNA. Clearly, the

choice of metric to use will be highly specific to the biological task at hand. Due to these

non-traditional search requirements over unprecedented scale of sequence data, handling

biological sequences efficiently has become an important challenge for database research.

The area of bioinformatics, which has developed almost independently of database

research, has considered the suffix-tree data structure (along with its variants such as

suffix-array, DAWG, etc.) as the defacto preprocessing of the genomic sequence. This is

mainly due to the adaptability of suffix-tree to solve many sequence processing problems

that are otherwise computationally extremely hard to solve (see [53] for a collection of

such problems). In addition, suffix-trees have linear time and space complexity, which

make them attractive for use with large scale sequence processing tasks.

A suffix-tree is a data structure that exposes the internal structure of a sequence in

a deeper way than any other datastructure such as inverted index. In this chapter, we

provide a brief introduction to the suffix-tree structure, their construction, and search

algorithms over them.

4.2 Suffix-Tree

Let S = s1s2 . . . sn be a sequence of length n with each si drawn from an alphabet Σ. A

substring of the string S is a string S[i . . . j] = sisi+1 . . . sj for some 0 < i ≤ j < n. A

suffix of the string S is a substring such that j = n – i.e., it is a part of the string starting

at any location, i, in the string continuing upto the end of the string. We represent a

suffix starting at position i as Si. Thus, there are exactly n suffixes from a string of length

n, one for each position in the string.

Definition 1 A suffix-tree TS for a n-character string S is a rooted directed tree with

exactly n leaves numbered 1 to n. Each internal node, other than the root, has at least
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Figure 4.1: Suffix-tree over a DNA fragment GTTAATTACTGAAT$

two children and each edge is labeled with a nonempty substring of S. No two edges out

of a node can have edge-labels beginning with the same character. The key feature of the

suffix-tree is that for any leaf numbered i, the concatenation of the edge-labels on the path

from the root to that leaf exactly spells out the suffix of S that starts at position i. That

is, it spells out Si. 2

Note that the above definition does not guarantee that a suffix-tree exists for every string

S. If there is a suffix Si that exactly matches another substring, S[j . . . k] for j 6= i, then

Si ends at a non-leaf. In order to overcome this, a delimiter symbol, denoted by $, is

concatenated with the string. It is assumed that $ does not appear anywhere else in the

string, and $ /∈ Σ. With this assumption, it is guaranteed that there is a unique suffix-tree

for every string S$. The leaf node corresponding to the i-th suffix, Si, is represented as li.

An internal node, v, has an associated length L(v), which is the sum of edge lengths on

the path from root to v. We represent by σ(v), the string at v, to represent the substring

S[i..i + L(v)], where li is any leaf under v.

The suffix-tree for a DNA fragment GTTAATTACTGAAT$ is shown in Figure 4.1. The

dark nodes are the internal nodes and the lightly shaded nodes are the leaf nodes. Each

edge has an associated label, which is a substring of the string S$, and entry under each

leaf node is the index i associated with the suffix corresponding to the leaf node.
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Figure 4.2: Linked suffix-tree (LST) over a DNA fragment GTTAATTACTGAAT$

4.2.1 Suffix-Links

Although the definition given above is the commonly used one for suffix-trees, it does

not incorporate one significant structural augmentation to the suffix-tree – namely, the

notion of suffix-links. In practice, the suffix-trees are augmented with additional edges

called suffix-links that are necessary to achieve their linear time construction and also to

significantly enhance the subsequent string searches. Suffix-links are edges (or pointers)

that span across the suffix-tree, between two internal nodes which may not be related

through a parent-sibling relationship.

Definition 2 Let xα denote an arbitrary string, where x denotes a single character and

α denotes a possibly empty substring. For an internal node v with path-label xα, if there is

another node sv with path-label α, then a pointer/edge from v to sv is called a suffix-link.

2

The suffix-link of the root of a suffix-tree is defined to be pointing to itself. Other than

this, the suffix-links are well defined for all the internal nodes [53]. And, sl(.) – the entire

set of suffix-links, forms a tree rooted at the root of TS, with the depth of any node v in

this sl(.) tree being L(v). Figure 4.2 illustrates the suffix-tree with suffix-links, built over

a genome fragment GTTAATTACTGAAT$. The dotted lines between internal nodes of the

tree are the suffix-links, with the direction of the arrow indicating the pointer direction.
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The suffix-links, in the present form, were first introduced by McCreight [80] and since

then they are implicitly assumed to be present in the suffix-tree. In addition to the linear

time construction, the presence of these links enable a much richer set of traversals over

the suffix-tree resulting in many high-speed search algorithms [22, 125]. On the other

hand, suffix-links are also considered a source of additional space overhead, and more

significantly, a reason for poor locality properties of suffix-tree construction and search

algorithms. Therefore, there are some proposals [47, 61, 123] which resort to quadratic

time construction of suffix-trees by completely dispensing with the suffix-links.

In this thesis, we distinguish between these two structural variants of suffix-trees based

on the presence of suffix-links as follows:

Un-linked Suffix-Tree (UST). This is the suffix-tree that strictly adheres to Defini-

tion 1. The suffix-links in the UST have been either dropped post-construction, or the

tree has been constructed using algorithms that do not need suffix-links.

Linked Suffix-Tree (LST). In contrast to USTs, the LSTs retain the suffix-links in

the tree providing much richer traversals across the suffix-tree. We focus mainly on

the construction and search performance of persistent version of LSTs. Hence, unless

mentioned explicitly, we use the terms LSTs and suffix-trees interchangeably.

4.3 Notation

For ease of reference, Table 4.1 summarizes the terminology associated with suffix-trees,

used in this thesis.

4.4 Linear Time Construction of Suffix-Trees

As mentioned previously, suffix-trees can be constructed in time linear in the size of

the input string for a fixed alphabet. Many algorithms for constructing the suffix-tree

in these time bounds have been proposed [80, 126, 130] – all of them depending on the
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S Sequence of length n
Σ Finite alphabet of symbols
$ Delimiter symbol such that $/∈ Σ
si Symbol at position i in S, drawn from Σ
S[i . . . j] Substring of S starting at position i and length (j − i + 1)
Si Suffix of the sequence S starting at position i

TS Suffix-tree built for the sequence S$
li Leaf in the suffix-tree TS corresponding to the suffix Si

L(v) Path length of a node v, the sum of edge lengths on the path from root to v
σ(v) Substring S[i . . . i + L(v)] associated with node v in the suffix-tree
sl(v) Suffix-link starting from the internal node v

Table 4.1: Notation

availability of suffix-links. In this thesis, we consider the online construction algorithm

due to Ukkonen [126] – which we call as OnlineSuffixTree algorithm.

A high level description of OnlineSuffixTree is given in Algorithm 1. The algorithm

reads the sequence from left to right, one character at a time, incrementally building the

suffix-tree for the string seen so far. During the execution of the algorithm, the labels

of leaf-edges extend, while some edges are split and new leaf nodes are introduced to

accommodate the new character read from the string. It should be noted that due to

the lack of the delimiter symbol $ in the middle of the sequence, the intermediate suffix-

trees are no longer guaranteed to have a one-to-one mapping with each suffix of the string

read so far. Hence, these intermediate suffix-trees are called implicit suffix-trees. Once the

delimiter symbol is read at the end of the sequence, the algorithm automatically generates

the final explicit suffix-tree, as required.

The OnlineSuffixTree can be viewed to consist of two phases in each iteration – a Locate

phase and an Insert phase. If implemented naively, the locate phase would have linear

time complexity, resulting in an overall O(n3) time complexity. Reducing this to a O(n)

algorithm is based on speeding up the locate phase (line 6 of Algorithm 1) through the

use of the following:

Suffix-links: After the first extension (with j = 0) for each value of i, it is possible
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OnlineSuffixTree (S[0 . . . n])
Input
S[0 . . . n]$ : The string to be indexed
Output
TS : The suffix-tree over the string S$
Complexity
O(n), where n is the size of the input string.

1: T0 ← Implicit suffix-tree for S[0 . . . 0]
2: for i = 0 to n do
3: j ← 0
4: while j < i + 1 do
5: {LOCATE PHASE}
6: Locate β = S[j . . . i] in Ti

7: {INSERT PHASE}
8: if β ends at a leaf lk then
9: Extend lk by adding si+1

10: else {β ends at an internal node, or the middle of the edge}
11: if from the end of β there is no path labeled si+1 then
12: Ti+1 ← split edge in Ti and add a new leaf
13: else
14: Ti+1 ← Ti {βsi+1 already exists in Ti}
15: end if
16: end if
17: end while
18: end for

Algorithm 1: Online Algorithm of Ukkonen

to quickly locate the node in the suffix-tree where the next extension has to be

performed through the use of suffix-links. The steps required are:

1. Locate a node v above the end of S[j . . . i] that has a suffix-link, and let γ

denote the string between v and the end of S[j . . . i].

2. Traverse the sl(v) to sv, and walk down the tree-edges for string γ.

3. Using the extension rules, ensure that the string S[j . . . i + 1] is in the tree.

4. If a new internal node is created, then it is the suffix-link target of a previously

created internal node. Create the suffix-link.

Skip-count Technique: In the step 2 above, it is possible to avoid individual character
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comparisons for the string γ, through the observation that γ must already exist (from

a previous step of the algorithm). It is only needed to locate the position where γ

ends. As a result, this step can be reduced to simply locating the appropriate branch

from each internal node encountered, reaching to the end of the edge and skipping

appropriate number of symbols in γ, until the number of symbols remaining in γ is

less than the length of the current edge – this is the edge that needs to be split so

as to insert S[j . . . i + 1].

Early Stop: Finally, if at any stage, the condition in step-14 is reached then we can

break out of the while-loop (step 4 through 17), guaranteed that the rest of S[j

. . . i+1] entries already present in the tree.

With these three algorithmic optimizations, the locate-phase of the algorithm can

be accomplished in an amortized constant time. This immediately gives us an O(n)

construction algorithm.

It is also important to note here that although the mechanics of OnlineSuffixTree seem-

ingly differ from an earlier suffix-tree construction algorithm due to McCreight [80], it has

been shown [46] that these two algorithms are closely related to each other. In fact, they

provide a transformation of OnlineSuffixTree into McCreight’s algorithm by modifying the

control structures of the algorithm, but leaving the sequence of tree constructing opera-

tions invariant. Hence, the results presented in this thesis are equally applicable in the

case of linear time construction of suffix-tree using McCreight’s algorithm as well.

4.5 Searching over the Suffix-Tree

Suffix-trees provide most efficient solutions to a myriad of string processing problems [4].

The fundamental query of whether a given pattern sequence Q occurs in a sequence S can

be answered in O(|Q|) steps – independent of the length of S, once S has been preprocessed

into a suffix-tree TS. A long list of string processing problems that are especially relevant

for biological sequence processing is available in [53].
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As discussed earlier in Section 4.1, the most important sequence processing task over

biological sequence databanks is that of approximate pattern location or similarity search-

ing. The dynamic programming approach [111] provides the general solution to this

problem, but is computationally expensive, taking O(|Q| ∗ |S|). This is clearly highly

impractical for genome scale databases. A class of algorithms, called Filtering algorithms,

are designed based on the observation that the dynamic programming methods spend

much more time verifying the non-existence of approximate matches in the database than

on computing the matches. Some of the efficient algorithms in this class [22, 25, 125]

exploit the power of LSTs in a critical way to achieve linear and sub-linear time com-

plexities, under both simple edit-distance model as well as under general scoring models.

There are many bioinformatics tools, prominent among them being MUMmer [29], that

use suffix-trees for similar purposes.

4.5.1 Locating Maximal Common Sub-strings

One of the most popular approximate search algorithms that exploit suffix-trees was

proposed by Chang and Lawler [22]. Their algorithm utilizes the suffix-tree to quickly

identify all the maximally matching substrings between the query pattern, Q, and the

database sequence, S, and then use this information to filter out large sections of wasteful

comparisons that dominate the computational cost. The user given parameter to this pro-

cess is the lower-bound on the length of the match, λ, to reduce the number of verification

steps that need to be performed.

Definition 3 (Maximal Common-substring Search) Given a database sequence S,

and a query sequence Q, locate, for each position i of Q, the longest matching substring

Q[i . . . i + j], that appears somewhere in S. In practice, it is desired that only matches

that satisfy a user-defined minimum threshold length, λ, are reported.

In other words, for each i, 1 ≤ i ≤ |Q|, locate all (i, j, k) triples where j = max j′ such

that Q[i . . . i + j′] = S[k . . . k + j′] and Q[i + j′ + 1] 6= S[k′ + j′ + 1] and j′ ≥ λ.

2
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MaximalSubstringSearch (S, T , Q, λ)
Input
S : Database sequence
T : Suffix-tree over the database sequence S
Q : Query string
λ : Minimum match-length to be reported
Output
L = {(l, q, d) | Q[q . . . q + l] = S[d . . . d + l], Q[q + l + 1] 6= S[d + l + 1], l ≥ λ, and l is
maximal given q}
Complexity
O(|Q|+ loc), where loc is the number of locations of match.

1: v ← root of T ; j ← 0; k ← 0; L = φ
2: for i = 0 to |Q| do
3: (v′, j) ← StepDown(v, Q[i . . .]) {v′ is the node at which matching

has stopped, and j is the length of the match}
4: if j ≥ λ then
5: L = L ∪ TraverseSubtree(v′)
6: end if
7: if IsLeaf (v′) = true then
8: k = v′.edgelen− j
9: v′ = v′.parent

10: end if
11: v = v′.suffixlink
12: v = SkipDown(v, k,Q[i . . .]) {Use the skip-count trick [53] to tra-

verse without comparisons}
13: end for

Algorithm 2: Maximal Common Substring Search

To further illustrate this, consider the database sequence – GTTAATTACTGAAT$ which

has been preprocessed into a suffix-tree shown in Figure 4.2. Now, given a query sequence

CTAATGACT, with threshold λ set to 3, the desired common maximal substrings between

the database sequence and the query sequence are: {TAAT, AAT, TGA, ACT}. Note that

although CT is a common substring, it is not reported since it does not satisfy the match

length restriction.

The basic idea of the LST based algorithm to locate maximally matching substrings,

which we call MaximalSubstringSearch, is to locate the first longest match between Q and

S by walking down the suffix-tree TS using symbols of Q – matching them “letter-at-
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a-time”. Subsequent longest matches are found by following the suffix-links and going

down the tree at the target of the traversed suffix-link. Note that this algorithm depends

heavily on the availability of suffix-links. A brief pseudo-code of the algorithm is provided

in Algorithm 2.

Locating Maximal Common Substrings over UST

In order to locate all the maximal common substrings between S and Q when S has

been processed into an UST (Unlinked Suffix-Tree) T ′
S, we use the observation that every

common substring must result in a prefix match between corresponding suffixes in S and

Q. This leads us to the following algorithm – use each suffix of Q to walk down the

suffix-tree T ′
S from the root node, until either the suffix is completely located or there is

a mismatch. If the length matched is greater than the value of λ, then add to the output

set, L, all the leaf nodes under the current location. Follow this process for all the suffixes

at positions from 0 to |Q| − λ + 1. We refer to this algorithm as MSSUST in the rest of

the thesis.

4.6 Implementation of Suffix-Trees

Until recently, suffix-tree indexes were considered as main-memory index structures. As

a result, the main concern in suffix-tree implementation has been that of reducing the

associated space overheads in order to be able to index larger sequences within a fixed

memory budget.

The design issue associated with the implementation of suffix-trees is the choice of

representation for the outgoing branches of internal nodes in the tree. The simplest

technique is to use an array of size |Σ| at each internal node. This array is indexed

by individual characters of the the alphabet, and contains the pointer to the child node

with its edge label beginning with the character indexed at that position. This array

allows constant-time access of child-nodes and updates. We term this representation as

array representation in the rest of the thesis. Although simple to implement, the array
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representation has not been favored since it could result in a lot of wasted space, with

many entries in the array being null.

As suggested by McCreight [80], a space efficient alternative is to use a linked list of

child pointers at an internal node with the internal node storing a single pointer to the

head of the linked list. When a new edge from the internal node is added, a pointer to the

child node is inserted into the list, and tree edge traversals are implemented by sequentially

scanning the linked list to locate the required character. However, this additional factor

of traversing a Θ(|Σ|) size linked list can result in adding the |Σ| factor to the time bounds

of the suffix-tree operations. This representation is termed as linked-list representation.

Although other alternatives such as using balanced binary search trees and perfect hash

tables for storing these child pointers at every internal node have been proposed [53],

the best in-memory implementation reported in [72] has used a variation on the linked

list approach – resulting in suffix-tree size upto 12.69 times the length of the sequence.

Hence, most suffix-tree implementations have preferred the linked list approach for their

representation.



Chapter 5

High-performance Persistent

Suffix-Tree Construction

5.1 Introduction

A unique aspect of suffix-trees is that, unlike traditional database indexes which are

typically a fraction of the database contents, their size is larger than the underlying

sequence data. In fact, standard implementations of suffix-trees require in excess of an

order of magnitude more space than the indexed data! As a case in point, the entire 3

Gbp of Human Genome is fully representable in about 1 GB (with each DNA symbol

represented with 2-bits), whereas the corresponding most space-economical suffix-tree

occupies close to 38 GB (= 3 Gbp × 12.69 bytes).1 That is, it is straightforward to host

the sequence data in main memory, but the suffix-tree itself needs to be disk-resident!

Thus, it becomes untenable to consider a suffix-tree residing fully in memory, indexing

an ever growing sequence corpus such as the GenBank maintained by NCBI. An obvious

solution to handle this space problem is to maintain the suffix-tree index on disk. Un-

fortunately, due to seemingly random traversals induced by the linear-time construction

algorithms, resulting in unacceptably high I/O costs, the folk wisdom is that disk based

1Although in the case of USTs further space optimizations are possible [110], resulting suffix-tree is
still almost an order of magnitude larger – ≈ 25 GB index-size for the Human Genome.

75
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implementations of suffix-trees are unviable [89].

In order to overcome this infamous “memory bottleneck” [36] of persistent suffix-tree

construction, there are two possible approaches:

1. The suffix-tree construction algorithm and its structure could be modified to make

it more suitable for on-disk implementation.

2. Tune the parameters of the environment in which suffix-tree is implemented, without

modifying either the structure or the construction algorithm.

The former approach primarily consists of completely abandoning the use of suffix-

links that are crucial in obtaining linear-time construction of suffix-trees. This enables

efficient batch-wise construction techniques, although with theoretically quadratic worst

case time complexity. The works of Hunt et al. [61] and Tata et al. [123] take this approach.

However, due to the resulting structure without suffix-links, some of the fast approximate

string processing algorithms that make use of suffix-links, such as computing matching

statistics [22], are rendered unusable.

In the work presented in this chapter, we take the second approach, and identify the

parameters that affect online persistent suffix-tree construction and quantify their impact.

Specifically, we make the following contributions:

First, we propose a novel buffer management strategy called TOP-Q, that takes into

account the behavior of traversals induced by the suffix-tree construction. This strategy

exploits the path length invariant (defined in Chapter 4) of suffix-tree nodes and hence

has almost no computational overhead for suffix-tree node access. The datastructures

associated with TOP-Q are extremely simple and are easy to maintain.

Second, we study the choice of suffix-tree implementation on the performance of its

construction. The previous work on suffix-tree representations [80, 72] had noted the

superiority of linked-list representation of suffix-tree nodes – due to its space optimality

over a variety of datasets. We show that this approach of suffix-tree implementation is ex-

tremely expensive in terms of disk I/O (hence in terms of construction time). Instead, we

show that a simpler and often neglected array representation of suffix-tree edges provides

far superior performance.
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Third, we present an empirical study of a variety of buffer management policies in

the context of suffix-tree construction in terms of their buffer space utilization. We show

through the results of this empirical analysis that TOP-Q outperforms popular buffer

management strategies such as LRU, and the highly sophisticated LRU(2) [93], imple-

mented using the high performance equivalent 2Q algorithm [64].

Finally, we describe an implementation of the TOP-Q policy on top of the CLOCK re-

placement policy, typically used for buffer management in database systems [101]. Specif-

ically, we present our implementation of TOP-Q based suffix-tree indexing within the

BODHI system.

In our experiments, we use the OnlineSuffixTree algorithm, described in Chapter 4.

However, we also show that the results remain the same even in the context of the

construction using McCreight’s algorithm. This is not very surprising, since, in their

classical paper [46], Giegerich and Kurtz have shown that these two algorithms have highly

similar structural properties. Our evaluation testbed consists of a variety of real DNA

sequences, and a synthetic symmetric Bernoulli sequence over a 4 character alphabet.

5.1.1 Organization

The remainder of the chapter is organized as follows: A study of node access patterns

observed during suffix-tree construction is described in Section 5.2. Then, in Section 5.3,

we present observations that help to identify the frequently accessed nodes during con-

struction, which form the basis for the design of TOP-Q. The TOP-Q buffer management

policy is described in Section 5.4. In Section 5.5, we describe the two suffix-tree implemen-

tation choices (linkedlist and array-based), before describing the evaluation framework in

Section 5.6. The experimental results are presented and analysed in Section 5.7. Imple-

mentation details of TOP-Q within the BODHI framework are presented in Section 5.8,

before concluding in Section 5.9.
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5.2 Persistent Suffix-Tree Construction

As described in Section 4.4, the suffix-tree over a string S can be built in a time propor-

tional to the length of the string, and the number of nodes in the resulting suffix-tree is

upper bounded by 2n. However, when we move the suffix-tree construction from mem-

ory to disk, these linear bounds no longer reflect reality, since they were obtained with

a RAM machine model, where every memory access has the same cost, irrespective of

its address. On the other hand, access-costs in secondary memory are dependent on the

address to which the previous access was made. For example, a long chain of accesses

to spatially contiguous addresses (block accesses) could cost much less than fewer but

random accesses.

During the construction of a suffix-tree, accesses to nodes are spatially non-contiguous.

Specifically, in the locate-phase, already constructed parts of the tree are re-accessed

many times via suffix-links. These traversals are not necessarily spatially local, leading

to seemingly random traversals over the tree. The following words of Giegerich and

Kurtz [45], typifies the behavior of these algorithms:

“The active suffix creeps through the text like a caterpillar. At the same time,

the corresponding active node swings through the tree like a butterfly”.

Thus, it is strongly believed that the accesses are random in nature – with no obvious

useful patterns discernible from the access traces.

5.3 Locating Preferred Nodes

In this section, we closely analyse the traces of accesses to nodes during online suffix-

tree construction, show that some of the nodes are indeed accessed far more frequently

than others, and provide a simple observation that helps to identify such nodes during

construction of the tree.

Before we proceed to analyse the traces, we note that the nature of accesses that are

expected during the construction of the suffix-tree is intricately linked to the stochastic
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Figure 5.1: Node Access Frequency

properties of the specific sequence at hand. There have been many efforts to classify the

sequences based on their stochastic properties [121]. One of the simplest sequence models

proposed as an approximation to genome sequences is that of Bernoulli generators. In this

model, symbols of the alphabet are drawn independently of one another; thus a string can

be described as the outcome of a sequence of Bernoulli trials. In addition, if all symbols

are drawn with equal probability, then the sequence is called symmetric, otherwise, it is

asymmetric.

Now, consider the internal node access statistics during suffix-tree construction for

a symmetric Bernoulli sequence (dataset S) derived from the access traces, shown in

Figure 5.1. These provide the correlation between the average number of accesses made

to a node and the eventual depth of the node in the tree, illustrating that, during the

suffix-tree construction, nodes higher up in the tree are accessed more number of times

than nodes lower in the tree. This correlation is also evident for suffix-tree construction

over real chromosomal sequences (dataset C) as shown in Figure 5.1.

Thus, it seems reasonable to cache the nodes that end up higher in the tree, in order

to serve these accesses faster. However, due to the nature of the edge splits during

construction, the depth of a node cannot be maintained without propagating the update

throughout the subtree under the node.
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5.3.1 Estimating the Depth of Internal Nodes

Although the depth of internal nodes cannot be maintained accurately, a simple obser-

vation on the structure of the resulting suffix-tree provides us with a means to estimate

this value efficiently. Considering sequences drawn from a symmetric Bernoulli stochastic

model, it is straightforward to see that:

1. Substrings of equal length are equally likely, and every substring forms the prefix of

some suffix of S.

2. If Sα is the set of all the suffixes of S which share a common prefix α, then the

probability of finding atleast one pair ai, aj ∈ Sα, such that they differ in atleast

one position within the next s symbols is directly proportional to the value s.

Applying these to the behavior of the suffix-tree during its construction, we get:

Observation 1 The longer the edge in the suffix-tree of a symmetric Bernoulli sequence,

more the likelihood of its being split as the length of the indexed sequence increases.

And obviously, no edge can be split once it has reached the limiting minimum length

of 1. From the above observation, we can infer that a node, in the extreme case, can

move further down in the suffix-tree until its incoming edge has only one symbol as its

label. Thus L(.) of any internal node forms an upper bound on its eventual depth. In

addition, this measure of path length is an invariant for the node, which results in easy

maintenance of this information during the construction of the suffix-tree. Hence, for

suffix-tree nodes over large sequences, we can approximate their eventual depth in the tree

by their path length.

5.3.2 Impact of Asymmetric Distribution

In deriving the above approximation to the eventual depth of a node, we made the as-

sumption that the sequence is drawn from a symmetric Bernoulli model. However, it is

unlikely that any real-world DNA sequence would conform to this restrictive model. The

asymmetry of real-life distribution results in substrings containing a larger proportion of
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frequent symbols, having higher probability of occurrence than other substrings of the

same length. This implies that if a node v has its label σ(v) containing smaller num-

ber of frequent symbols, it has lower probability of being split – resulting in a possible

over-estimation of its eventual depth by its path length L(v).

The graphs in Figure 5.2 show, for the four DNA datasets used in our experiments, the

error in estimation of eventual depth of a node vis-a-vis the actual depth of the node, as

well as the corresponding number of nodes at each depth of the tree. These graphs were

obtained after processing 5Mbp of each of the datasets. The figure shows the statistics for

nodes only upto a depth of 20, since the number of the internal nodes at depths greater

than 20 is too small to make any impact although the error in estimation of eventual

depth is quite large for such nodes.

The average error at each depth was computed as the arithmetic mean of (L(.) −
Depth(.)) for all nodes at that depth. Note that since L(.) forms an upperbound on the

depth of the node, this value is always positive. The following points have to be noted

with respect to these graphs:

1. For all the datasets, path length corresponds exactly to the depth of the node up to

a certain value of actual depth, which is dependent on the length of the sequence

processed. As shown in the graphs, this value is 10, after processing 5Mbp of each

of the datasets.

2. The number of nodes peaks at a depth of 11, at which point the error in the esti-

mation of depth is small for all the datasets.

3. For the dataset S, estimates are accurate throughout providing empirical evidence

for the soundness of Observation 1.

4. The worst estimation errors are with dataset C, which has a highly skewed distri-

bution of basepairs. However, a majority of nodes in the tree occur within depth

14, where errors are not too large.

5. The depth of a node approaches its path length with the increase in length of
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the sequence indexed. Therefore, the estimation errors continue to decrease as we

process sequences of greater length.

In summary, these graphs clearly demonstrate that even for datasets that deviate from

the symmetric Bernoulli model, the impact of errors incurred by the proposed approxima-

tion to eventual depth is not very significant, and the quality of approximation improves

with the increase in the length of the sequence.

5.4 Design of TOP-Q

Before describing the TOP-Q buffering strategy, we present the design of TOP, a simpler

version of TOP-Q, which exploits the observation that higher number of accesses are to

the nodes that are eventually higher in the tree, as well as the approximation to the

eventual depth presented above.

We consider the situation where each disk-page contains a collection of nodes of the

suffix-tree – either internal or leaf, but not a mix of both. In order to minimize the storage

cost of maintaining the path length, each disk page contains an associated path length,

which is the average of the path lengths of all nodes packed in it. Each disk-page is

completely packed with nodes as they created, and since the path length for each node is

an invariant, the path length of the page can also be computed at the time it is committed

to the disk.

Definition 4 (TOP Ranking) Let di be the average of path lengths of all nodes in a

disk-page bi. Then, we define a ranking function R, over disk-pages as follows:

R(bi) > R(bj) if di < dj

We call the ranking generated as the TOP Ranking.

Definition 5 (TOP Buffering Algorithm) The TOP algorithm specifies a page re-

placement policy when a buffer is needed for a new page to be read from the disk: the page

b to be dropped (i.e., one chosen as the replacement victim) is the one whose TOP rank
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is the smallest. Only time this choice is ambiguous is when more than one page has same

R value. In this case, we can resolve the tie using a subsidiary policy. We follow a simple

policy of choosing the page whose creation time is oldest among the tied candidates for

eviction.

We call this buffering policy as TOP, to indicate that it tries to retain those pages of

the suffix-tree that are estimated to be top pages i.e., pages containing the top nodes of

the tree.

5.4.1 Accommodating Correlated Accesses

Although the TOP buffering policy exploits the preferential access to the nodes with lower

path lengths, it ignores the presence of correlated access patterns exhibited by the suffix-

tree construction. We provide below an example situation in the construction process,

where this makes a impact on the performance of TOP.

The construction proceeds by splitting an edge, introducing a new branching node

and a leaf node at that location, and filling in suffix-link pointers if needed. Every node

stores the details of its incoming edge, i.e., (start, end) indexes into the sequence and the

length and label of the edge. When an edge p(v) → v, is about to be split, the following

actions are performed:

1. create a new branching node, v′, and a leaf node l,

2. set the incoming edge details for both v′ and l,

3. update the incoming edge details for v (the edge length is shortened, and the start

value and corresponding edge label are changed), and finally,

4. v′ is set as the child of p(v) in place of v, and v is now located under v′.

In addition, by the nature of the algorithm, only v has an active reference to it, and

p(v) is to be accessed through the parent pointer available with v. Therefore, p(v) is not

guaranteed to be pinned in memory during this process.
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Figure 5.3: Correlated Accesses in TOP

As the construction progresses, the internal nodes have ever-increasing path lengths

associated with them. Therefore, the TOP policy evicts the pages as soon as they are

filled and are not pinned through any active reference, since the internal pages also have

larger path length values as the construction proceeds. Therefore, there is a possibility

that p(v), more precisely, the page containing p(v), is not retained in the buffer for long.

We evaluated the impact of such correlated accesses to nodes, by measuring the the

number of characters processed by the algorithm between the instant a page is evicted

and the instant it is next requested, generating a fault on the buffer pool. The initial

interesting portion of the results is shown in Figure 5.3, which plots the number of faulted

pages on a logscale and the number of characters processed since they were last evicted

from the buffer pool. As shown in these graphs, the number of evictions that have pages

with immediate reference – i.e., before the complete addition of the next character into

the suffix-tree – is orders of magnitude larger than the evictions of pages that are accessed

after many more characters are added.

The TOP-Q strategy compensates for this un-responsiveness of TOP to such accesses,

by splitting the buffer pool into a collection of pages maintained in the order of their

path lengths – implemented as a Heap structure, and a short fixed-length queue of pages



Chapter 5. High-performance Persistent Suffix-Tree Construction 86

to hold the pages evicted from the heap. The buffered pages in the heap are chosen for

eviction just like in the TOP policy. However, unlike TOP, these pages are moved to

the short, fixed-length queue part of the buffer pool managed in a FIFO fashion. The

presence of the queue of pages effectively introduces a delay in the eviction of pages,

satisfying almost all the immediate references to the page. We have used a queue of 10

pages with buffer-pool sizes ranging from thousands to hundreds of thousands of pages in

our experiments and found it to perform well in practice.

5.5 Suffix-Tree Representation

We now turn our focus to the physical representation of the nodes of the suffix-tree. Much

attention has been paid to reducing the size of these nodes [72], the goal being to maintain

the tree entirely in memory, so that non-local accesses over the tree induced by linear-time

construction algorithms are not affected by the virtual memory paging [53]. However, it

is not known which of these node representations is more appropriate when the suffix-tree

has to be constructed and maintained completely on disk.

The simplest but most space consuming strategy is to use an array of size |Σ| (where Σ

is the size of the alphabet) at each internal node of the tree. Each array entry corresponds

to an edge, whose edge-label begins with the character associated with the array entry.

These edges are implemented as pointers to corresponding child nodes in the suffix-tree.

We term this representation as array implementation of suffix-tree nodes. This represen-

tation, although simple to program, is not preferred in most practical implementations

since this results in a lot of wasted space, with many pointers containing null values.

This overhead is especially severe in nodes lower in the tree since the tree edges become

sparser at lower portions of the tree.

As suggested by McCreight [80], a space efficient alternative to the array is to use

a linked list of siblings, and at every internal node maintain a single pointer to the

head of the linked list containing its child nodes. Traversals from the internal node are

implemented by sequentially searching this list for the appropriate child node. By storing

the linked list in a sorted order, it is possible to halve the traversal overhead. We refer to
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Figure 5.4: Structure of Suffix-tree Nodes

the resulting representation as the linked-list representation of the suffix-tree node. This

structure is a popular choice, due to its simplicity in implementation as well as superior

space economy.

The structure of internal nodes and leaf nodes, for the array and linked-list imple-

mentation is given in Figure 5.4. It is clear that the linked-list representation achieves its

superior space economy by significantly reducing the size of every internal node – in our

implementation, from 29 bytes per internal node in array representation to 21 bytes per

internal node.
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Name Description
%-age Distribution

Length of nucleotides
(in Mbp) A T C G

S Symmetric Bernoulli 25 25 25 25 25
D Drosophila Melanogaster genome 25 29 29 21 21
H Human Chromosome II 25 30 30 20 20
C C.elegans Chromosome I 15 32 32 18 18

Table 5.1: Characteristics of the Datasets

5.6 Evaluation Framework

In this section, we describe the framework used for evaluation of various buffering strate-

gies, and node implementation choices, during the online construction of persistent suffix-

trees.

In our evaluation, we use a total of four DNA datasets, three of which are drawn from

C.elegans Chromosome I (dataset C), Human Chromosome II (dataset H) and complete

genome of Drosophila Melanogaster (dataset D). The remaining dataset is a synthetic sym-

metric Bernoulli sequence over DNA alphabet (dataset S). The details of these datasets

are summarized in Table 5.1. From these statistics we see that these datasets comprise of

sequences ranging from symmetric distribution of alphabets (dataset S) to highly skewed

distribution (dataset C).

5.6.1 Implementation Details

As already mentioned in Section 5.4, suffix-tree nodes are packed into fixed size pages

before they are committed to the disk. The pages on disk are either internal pages or

leaf pages, depending on whether they store internal nodes or leaf nodes of the tree. The

variation in the internal and leaf node sizes leads to the packing density (i.e., the number

of nodes in a disk page) of leaf pages being greater than that of internal pages.

The storage of both internal nodes and leaf nodes is in their order of creation. Each

page is committed immediately to the disk, as soon as all the space in the page is utilized.

Note that, at the time of committing to the disk, all the entries in nodes of the page may
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not be filled – some of them may be defined and updated at later times in the construction

process. Also, a page is pinned in memory if there are any active references pointing to

nodes in the page.

The internal and leaf pages are distinguished also in terms of their buffer pools. This

is due to the distinctly different access patterns made during the construction of the tree.

Internal nodes of the tree are used repeatedly (with or without suffix-links) for reaching

the location of the next suffix. On the other hand, leaf nodes are re-visited only when

the suffix being located ends in a leaf node. In fact, our buffer management system is

designed such that separate policies can be applied to internal and leaf page buffer pools.

5.6.2 Buffer Management Policies

The design of buffer management policies has been an active area of research for many

years, and a host of policies that show improved hitrates over various database workloads

have been proposed [23, 33, 93, 106].

We compare the static policy of TOP-Q against the following popular policies that

are based on page access statistics, commonly used in database management systems:

LRU (Least Recently Used) In case of a page fault, it replaces the least recently

used page from the buffer pool to accommodate the new page. It incurs a constant

time computational overhead for every access, in order to manipulate the list of

pageframes maintained in the order of recency of access.

2Q The 2Q algorithm [64] is a constant time overhead approximation of LRU-2 [93] that

is found to perform as well as LRU-2 for a variety of reference patterns. The 2Q

algorithm covers the most important drawback of LRU-2, by reducing the computa-

tional overhead from log(N) for every access in LRU-2 to a constant time overhead.

The metric of comparison between these popular buffering policies and our TOP-Q

strategy are the overall buffer hit-rates observed during the construction of the suffix-tree,

with increasing length of sequence indexed, and for a fixed amount of buffer space.
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5.6.3 Buffer Pool Allocation

In our evaluation of buffering policies, we maintain separate buffer pools for leaf and

internal pages, with the buffering policy applied within each of the buffer pools. With a

fixed amount of memory space at our disposal as the buffer space, it is interesting to see

if there is an effective way to partition this space between the two classes of pages of the

suffix-tree.

The simplest partitioning is to distribute the available buffer pages equally between

both leaf and internal nodes. It results in more number of leaf nodes being buffered than

the internal nodes due to the better packing density of the leaf pages. Therefore, the

effectiveness of the buffer pool can be improved by partitioning it to hold equal number

of internal nodes and leaf nodes. Although the number of internal nodes is 0.6 - 0.8 times

the number of leaf nodes (for typical DNA sequences), the level of activity over internal

nodes, in terms of their accesses and updates, is much higher than over leaf nodes. Hence,

partitioning schemes that are skewed to hold more number of internal pages than leaf

pages can be expected to perform better in practice.

Additionally, it should be noted that, as the construction of the suffix-tree progresses,

the overall size of the tree increases, leading to traversals over the tree covering a larger

number of pages. In fact, a point may arrive when the available fixed size buffer may

not be sufficient to efficiently handle the requests over an extremely large suffix-tree. In

order to compensate for this growing size of the data-structure and provide a normalized

performance measure for all the policies, we consider the steady hitrates obtained, when

a fraction of the suffix-tree size is provided for buffering. In other words, as the suffix-

tree construction progresses, more pages are introduced into the buffer pool such that

the ratio of buffer pool size to the total size of the suffix-tree (measured in number of

pages) is held constant. The distribution of steady hitrates obtained under various values

of buffer fraction – starting from 100% buffering to a small fraction of the tree – will

reveal the performance of each of the buffering policies, independent of the size of the

tree. Furthermore, the performance of a buffering policy at a value f on this distribution,

will also be its best performance with a fixed-size buffer when the ratio of buffer-pool size
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Array Representation Linked-list Representation

Internal Node 29 bytes 21 bytes
Leaf Node 5 bytes 9 bytes

Page Size 4096 bytes

Table 5.2: Default Experimental Parameters

to the current tree size equals f . In practice, the instantaneous performance could only

be smaller due to the possible “memory effects” – i.e., retention of pages which may not

be useful in the future.

5.7 Experimental Results

In this section, we present the results of our empirical evaluation of the buffering poli-

cies and the node implementation choices outlined in previous sections. The parameters

applicable for all our experiments are summarized in Table 5.2.

5.7.1 Construction with Fixed-size Buffer

The fixed buffer size experiments were conducted with total memory space allocated for

the buffer pool restricted to just 32MB, a total of 8000 pages. This enabled us to work

with smaller length sequences, and perform experiments for collecting buffer pool statistics

using a simulated memory hierarchy. However, in practice, much larger datasets will be

indexed and therefore proportionately larger buffer pool sizes should be used.

As described earlier in Section 5.6.3, the available buffer space can be partitioned

between internal and leaf buffer pools, ranging from equal partitioning to skewed parti-

tioning in favor of the internal buffer pool. We experimented with many buffer partitioning

schemes, and found that the overall hitrate is dominated completely by the internal node

accesses alone. Thus, the performance improves with increased skew in the partitioning,

with more space allotted for buffering the internal pages. This observation holds for both

the array as well as linked-list representations of the suffix-tree. In this thesis, we present
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results for equi-partitioning of the buffer pool with 4000 pages each for managing internal

and leaf pages and a highly skewed partitioning with 7950 pages to internal buffer pool

and remaining 50 pages as leaf buffers.

Array-based Suffix-Tree Construction

The buffer hitrate obtained for page accesses, of both internal and leaf pages, using array

representation of nodes is shown in Figure 5.5. The graphs also show the hitrate for

simple TOP, in order to provide a measure of gains obtained by the TOP-Q extension.

Figure 5.5 shows that TOP-Q provides consistently higher hitrates than LRU and 2Q.

In addition, the following observations can be made about these results:

• The hitrates with skewed partitioning of buffer pool are higher than with equi-

partitioning. This clearly shows that the overall performance is dominated by the

effectiveness of the buffering over internal pages.

• TOP-Q, as expected, performs better than the plain TOP strategy and provides

hitrates that degrade slower with increasing suffix-tree size, as compared to the

other policies.

• LRU exhibits the lowest hitrate, and, in fact, was found to have performance no dif-

ferent to the policy of evicting a randomly selected page – i.e., Random Replacement

strategy! 2

• The performance of TOP is better than LRU in the initial stages of the construc-

tion, and with increased skew in the buffer allocation, TOP improves to match the

performance of 2Q.

• The ideal sequence for TOP is the dataset S, which is a symmetric Bernoulli se-

quence. With this dataset, it provides improved hitrates over even the highly so-

phisticated 2Q algorithm.

2Random Replacement strategy is considered to provide a practical lower-bound on the hit-rates of
any buffering strategy, as it does not use any knowledge of past reference behavior [33].
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Figure 5.5: Hit-rates for Construction with Array-based Nodes
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In summary, TOP-Q emerges as the best buffer management policy with any buffer

partitioning strategy over all the datasets. Moreover, it should be noted that TOP-Q has

an extremely low computational overhead as compared to LRU and 2Q, since its control

data-structures are not updated at every access to a page.

Linked-list based Suffix-Tree Construction

The behavior of all the buffering policies for linked-list representation of nodes is shown

in Figure 5.6. First of all, it is worth noting that all the algorithms provide better hitrates

than in the case of array representation, with the sole exception of TOP. This is due to

greater presence of correlated accesses, similar to those discussed in Section 5.4.1, arising

out of traversals over the linked list of siblings. But the TOP-Q algorithm still maintains

an edge over the LRU and 2Q algorithms, although the improvements are not as significant

as in the case of the array representation. Another interesting point is that both LRU

and 2Q show almost the same hitrates, with both equal and skewed partitioning of the

buffer pool.

Choice of Implementation

The comparison of graphs in Figure 5.5 and Figure 5.6 indicates that the linked-list

representation provides better hitrates than array representation. This is partly due to the

fact that for the same amount of buffer space at our disposal, the linked-list representation

buffers more number of internal nodes due to its improved space economy. This seems to

suggest that the linked-list representation is better suited for persistent construction with

buffering.

However, this conclusion is misleading since the sequences of page references in both

cases are very different and the hitrates are normalized within each reference sequence.

The absolute number of disk accesses made during the construction provides a metric that

is independent of the reference sequence. Figure 5.7 shows the absolute number of read

and write disk accesses, using the TOP-Q buffering policy, for the dataset H. As these

numbers indicate, the linked list representation has a significantly higher I/O overhead
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Figure 5.6: Hit-rates for Construction with Linked-list Representation
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Figure 5.7: Disk-accesses during Construction

than the array representation. This overhead is primarily due to traversals over siblings in

the linked-list to locate the appropriate child to follow. Each of these siblings could have

been created at different points during the construction, resulting in their non-contiguous

storage on disk.

5.7.2 Construction with Proportional Buffering

We now move on to proportional buffering, discussed in Section 5.6.3. The resulting

steady hitrate values are plotted in Figure 5.8.

As shown in these graphs, the performance of LRU improves almost linearly with the

buffered fraction of the datastructure and 2Q is only marginally better than LRU. On the

other hand, TOP-Q provides super-linear improvements with diminishing returns, with

increasing fraction of buffering. The performance of TOP-Q peaks for about 25% of the

tree in the buffer providing close to 72.5% hitrate for construction over real-life DNA

sequences. When more than 60% of the suffix-tree is buffered, then all the three buffering

strategies perform equally well with upto 85% steady hitrate.
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Figure 5.8: Behavior with Proportional Buffers
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5.7.3 On-disk Construction

In order to consider the practical impact of the improved performance statistics for TOP-

Q buffering and array representation of nodes, we built persistent suffix-trees for large

DNA sequences on two different classes of machines. One was a PC class machine running

Linux Redhat 8.0 and having an 18GB 10,000-RPM SCSI hard disk (IBM DDYS-T18350M

model). The other machine represents the server class hardware used in current day large

bioinformatics projects – a HP-Compaq ES45 server running Tru64 Unix 5.1 and 432GB

(6*72GB) storage with single channel RAID controller at RAID-0 configuration. We refer

to these two platforms as PC and ES, respectively, in the rest of this discussion.

We compared the total execution time for constructing a persistent suffix-tree using

1GB of buffer space, split in 2 : 1 ratio, in favour of internal pages. Figure 5.9 provides

the performance of various strategies on both the platforms. These results show that

TOP-Q with array representation provides 50% to 80% improved construction time over

both platforms considered. Further, we constructed a persistent suffix-tree over 250 Mbp

sequence from the Oryzasativa (Rice) genome. Using TOP-Q strategy with array-based

representation, the index could be constructed within 10 hours, on the ES45 server.

5.8 Implementing TOP-Q Policy in BODHI

The underlying Shore storage manager (SM) for BODHI, has a global buffer-manager

for each server-instance, that uses CLOCK replacement policy for managing a shared

buffer pool. However, it has no direct support for changing the buffering policy based

on the page-type and workload characteristics. Instead, SM provides an API for setting

a “hate-hint” value for a record (and thus the page containing it), which is used by the

buffer manager to determine how long to retain a pageframe in the buffer pool after it

has been unpinned. By setting this value to 0, it is possible to schedule the page for

eviction immediately, larger values retain the page for longer duration. In addition, SM

also provides standard interfaces for pinning and unpinning of records in memory, ensuring

that they are not evicted from the buffer-pool while they are pinned. We utilized these
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(a) Platform: ES

(b) Platform: PC

Figure 5.9: Persistent Construction Times
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Figure 5.10: Storage Structure of Suffix-tree Index in BODHI

features to develop a VAS-layer implementation of TOP-Q buffering policy for persistent

suffix-tree management in BODHI.

5.8.1 Storage Structures for Suffix-Tree Index

The default page-size used by the Shore SM is 8192 bytes, out of which 72 bytes are used

for maintaining page-specific book-keeping information, including two 4-byte slot-entries,

starting at the end of the page. A record consists of a header part, and the data part

– header typically holds record details such as type information of the object, etc. For

each record, Shore also adds a 12-byte tag with record specific information such as its

serial number, record type, header length, and record length. Additionally, for each record

beyond the first two records in the page, Shore also maintains a 4-byte slot-entry in the

data space of page.

If one were to naively implement each suffix-tree node (internal or leaf) node as a

record, we would spend more than 2-times the data-size just on the SM specific overheads

– leaf nodes with 5-byte size will now be 17-bytes long! In order to minimize this overhead,

we designed a single record that spans the entire data portion of the page, holding a

number of suffix-tree nodes. Figure 5.10 illustrates the implementation of these records.

The path length of the record is maintained as a 4-byte header information.

5.8.2 TOP-Q with CLOCK

The sequence services component of BODHI which is responsible for genome sequence

storage, also maintains the suffix-tree index over the sequence collection. The records

that are to be buffered by the TOP-Q policy – those in the TOP heap structure and in
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the eviction queue – are kept pinned in the buffer. As soon as a page is evicted by the

TOP-Q policy, it is unpinned, and the hate-hint is set to 0 in order to schedule for eviction

from the SM buffer pool as well. Note that a page will be retained in the buffer-pool,

although it is scheduled for eviction, until the clock hand (of CLOCK replacement policy)

passes over the corresponding pageframe. This can be viewed to be similar to increasing

the length of the eviction queue in the TOP-Q policy.

5.9 Conclusions

In this chapter, we have evaluated the impact of buffering and internal node implementa-

tion choices on the construction of a suffix-tree in secondary memory. We also proposed a

novel low overhead buffer management policy called TOP-Q, which exploits the pattern

of accesses over the suffix-tree during its construction. Through an extensive empirical

study involving both DNA and Protein sequences, we showed that TOP-Q performs bet-

ter than other popular buffer algorithms such as LRU and LRU-2. The TOP-Q algorithm

saves more than 75% of disk I/O by buffering merely 25% of the tree.

In addition, it was shown that that the commonly used, space-economical linked-

list representation of the suffix-tree is extremely expensive for construction on secondary

memory. Instead, a simple implementation using arrays at each internal node is shown

to be far better suited for persistent suffix-tree representation.

A performance evaluation of TOP-Q with array representation of nodes against a

popularly reported linked-list representation with LRU buffering policy showed that sig-

nificant speedups to the tune of 50% to 70% were obtained, over different platforms.



Chapter 6

Search Optimized Suffix-Tree

Storage

6.1 Introduction

As we discussed in previous chapters, despite the utility of suffix-trees in accelerating a

number of sequence processing tasks, their practical usage has been limited over small

length sequences due to their space overheads. Further, this piquant situation is rendered

even worse due to suffix-trees not being disk-friendly, as a consequence of the random

traversals across tree nodes induced by the standard construction and search algorithms.

In addition to the techniques proposed in Chapter 5, there has been significant recent

research activity to address this problem and design high-performance persistent suffix-

trees [61, 110, 123].

However, these efforts have mainly focused on the construction aspect, that is, on how

to build the tree efficiently on disk.1 In this chapter, we take the next step of considering

the search aspect in detail and investigate the associated efficiency concerns. Specifically,

our focus is on whether it is possible to optimize the layout of the suffix-tree with regard

to the assignment of tree nodes to disk pages, such that search is optimized. While layout

1Although in [60, 110], authors have reported the search performance on the resulting persistent
suffix-trees, they have not explored the issue in detail.

102
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has been well-studied in the database literature for access structures such as kdb-trees,

Quad-trees etc., we are not aware of any similar work on suffix-trees. Further, carrying

out this study for suffix-trees poses new problems arising out of the following:

• The patterns of search traversals over suffix-trees are much more complex than

those found in traditional index structures, since both tree-edges and suffix-links

are involved.

• Presence of suffix-links turn the suffix-tree into a cyclic structure.

• Suffix-trees are not inherently balanced data structures, unlike typical secondary

memory index structures.

Our experiments with a variety of real genomic sequences against representative query

workloads demonstrate that the currently available layout choices are extreme – they ei-

ther optimize “vertical” traversal through the tree-edges, or optimize “horizontal” traver-

sal through the suffix-links. But, sequence search algorithms typically need to traverse

both edges and links – for example, to find all maximal matching substrings between the

database sequence and a query, tree-edges are used to walk down the tree matching the

query sequence along the way, and the subsequent matches are found by following the

suffix-links [22]. Many popular genomics software such as MUMmer [29], and BLAST [1]

achieve speedups through the resulting high-speed maximal substring location technique.

Given the above motivation for designing a holistic algorithm that optimizes the layout

for both kinds of traversals, we present in this chapter Stellar (Suffix-Tree Edge and Link

Locality AmplifieR), an algorithm that attempts to achieve this goal. Stellar is a linear-

time, top-down strategy that utilizes the structural relationship between the suffix-links

and the tree-edges under associated subtrees, to achieve high locality of both suffix-links

and tree-edges. We quantify its effectiveness with a detailed performance study.

In summary, the contributions of this chapter are as follows:

Firstly, we demonstrate that the standard layouts of suffix-trees optimize only either

edge traversals or link traversals, resulting in slow searches of genomic sequences.
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Next, we present Stellar, a suffix-tree layout that optimizes both kinds of traversals,

thereby providing significantly improved search performance.

Finally, through detailed empirical evaluation, we show that sequence searching over

a LST is superior, in terms of disk I/O, than the same task performed over an UST,

using MSSUST algorithm. These results quantify the search utility of suffix-links, thereby

highlighting the need to retain them in persistent suffix-trees despite the associated space

overhead.

Organization

The remainder of this chapter is organized as follows: Section 6.2 presents the index

layout strategies currently available, and their ineffectiveness in the context of persistent

suffix-trees. The design of our new Stellar layout algorithm is given in Section 6.3. The

experimental setup is described in Section 6.4 before highlighting the results of our exper-

imental analysis in Section 6.5. In Section 6.6, we present results to quantify the utility

of suffix-links in search tasks despite the additional space overheads they impose. Finally,

we summarize our results in Section 6.7.

6.2 Persistent Suffix-Tree Layout

Suffix-trees, unlike popular persistent index structures such as B+-Trees and R∗-Trees,

are not inherently balanced data structures – their structure depends entirely on the

combinatorial characteristics of the sequence being indexed. In the worst-case, the tree

can degenerate into a linear chain of internal nodes. Considering the example suffix-tree

shown in Figure 4.2, leaf-node 8 is an immediate child of the root, while leaf-node 1 is at

depth 3.

In addition, the fan-out degree of suffix-tree nodes cannot be varied to suit the disk-

page size, since the fan-out of each internal node of a suffix-tree is upper-bounded by the

size of the alphabet of the indexed sequence. Hence, many nodes of a persistent suffix-

tree will be stored on a page, with nodes interconnected within as well as across pages.
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Therefore it becomes critical to choose the nodes that will be placed in the same disk-page

in order to reduce the overall disk I/O cost of traversing the suffix-tree during search.

Earlier research on disk layout of persistent indexes [31] has shown that a heuristic-

based linear-time algorithm, henceforth called SBFS, that does recursive localized

breadth-first layout of the tree, outperforms other commonly considered tree layout meth-

ods such as Breadth-first and Depth-first strategies. Through empirical studies they also

show that the I/O cost of SBFS-ordered tree is within a small factor of the cost of an

optimal quadratic time layout algorithm.

The basic idea behind the SBFS packing strategy is to recursively perform many local

breadth-first traversals, beginning from the root of the tree, packing nodes in the order

of visiting them into disk pages. Once enough nodes have been visited to fill a page, or

there are no more nodes to be visited, the nodes visited so far are assigned to a page.

Each of the remaining nodes in the BFS queue then becomes the root of a separate SBFS

traversal. The recursion terminates when all nodes have been visited.

6.2.1 Issues in Persistent Suffix-Tree Layout

The storage layout of persistent suffix-tree introduces novel issues due to the inherent

structural complexity of suffix-trees and also the non-traditional search traversals over

the resulting structure. Note that the general problem of persistent graph layout is shown

to be NP-complete [48].

Structural Complexity: In addition to the issue of complex search traversal pat-

terns, suffix-trees exhibit higher inherent structural complexity than typical tree

index structures due to the presence of cyclic substructures. As pointed out in Sec-

tion 4.2.1, the collection of tree-edges as well as the collection of suffix-links in a

suffix-tree form two separate rooted tree structures. Also note that in the tree struc-

ture induced by the collection of suffix-links, the links between nodes are reversed

from the natural “parent-to-leaf” direction. That is, there exists a directed path

starting at any internal node to the root of the suffix-tree (also the root of the tree

induced by suffix-link collection), via a chain of suffix-links. And, from the root
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node, any of the internal nodes are reachable through a chain of tree-edges, thus

completing a cyclic path.

Complex Traversal Patterns: The search algorithms over suffix-trees exhibit com-

plex traversal patterns, significantly different from those commonly found in tra-

ditional indexing structures. In typical index structures the queries are mostly

lookup queries involving root-to-leaf traversals. On the other hand, searching over

suffix-trees involves simultaneous use of tree-edges and suffix-links. Thus, the lay-

out strategy should take into account the two “orthogonal” traversal paths during

suffix-tree based search.

Due to these complexities, none of the previously proposed layout strategies that are

designed to work with either tree structures or DAG (directed acyclic graph) structures are

directly applicable in the context of suffix-trees. Nevertheless, to serve as a comparative

yardstick, we investigate the efficacy of SBFS strategy outlined above for laying out a

persistent suffix-tree on disk, by ignoring the suffix-links during the layout process.

6.2.2 Search Utilization of Links and Edges

We now quantify the relative utilization of suffix-links and tree-edges during searches, in

order to evaluate whether the search tasks indeed require combined locality of both forms

of inter-node connectivities in the suffix-tree.

Figure 6.1 shows, for different query collections (described in Section 6.4), relative

utilization of tree-edges over that of suffix-links during maximal substring search as λ,

the minimum match-length threshold, is varied in the biologically significant operational

region. Note that we also include the match-location reporting phase, which uses only

tree-edges to traverse the subtree under the match.

These graphs demonstrate that although searches involve more traversals of tree-edges

than suffix-links for lower values of minimum match length, the differential is within a

small constant factor. Further, as the λ value increases, the utilization of tree-edges

converges to within a factor of 2 of the suffix-links used, i.e., for every 2 edges, 1 suffix-



Chapter 6. Search Optimized Suffix-Tree Storage 107

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5  10  15  20  25  30  35  40  45  50

R
el

at
iv

e 
T

re
e 

E
dg

e 
U

til
iz

at
io

n

λ

hEST50

hEST100

hEST200

Figure 6.1: Relative Edge Utilization

link is traversed by the algorithm. Therefore, the number of suffix-links traversed is

comparable to the number of tree-edges used during searches – suggesting that the search

algorithms can significantly benefit by simultaneously improving the number of intra-page

suffix-links as well as tree-edges.

6.2.3 Comparing the Quality of Layouts

Before we can evaluate different layout strategies, it is required to develop a metric that

can effectively capture the structural variations between suffix-trees laid out with alter-

nate layouts. One straightforward way to evaluate the quality of layouts obtained using

different storage strategies is to execute a number of queries over the suffix-trees laid out

using these strategies and measure the disk I/O cost. However, this evaluation depends

heavily on the characteristics of the query workload. It does not immediately reveal to

us the structural properties of the layout that could affect general search workloads.

The overall efficiency of a disk layout depends on the amount of inter-connectivity

of nodes within a disk page. The nodes in the suffix-tree are interconnected through
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either tree-edges or suffix-links (or both). Hence, it is possible to capture the structural

effectiveness of a layout strategy through the numbers of suffix-tree edges and suffix-links

that are entirely within a page, i.e., the source-target pairs are placed in the same diskpage.

Using this metric, we first evaluated the layout obtained at the end of suffix-tree

construction using OnlineSuffixTree algorithm, by ordering the nodes as they are created

during the construction. We call this layout as CO (Creation Order) layout. We found

that CO-layout provides practically no tree-edge locality – 0.2-0.5% of tree-edges were

intra-page, while suffix-link locality was reasonably high – 39-42%.

Next, we used the SBFS strategy to layout the persistent suffix-tree – ignoring the

suffix-links during the layout process. This resulted in the other extreme in locality

characteristic, with 75-80% of tree-edges being intra-page, but virtually no suffix-link

locality – less than 0.1% of suffix-links were local!

Table 6.1 summarizes the results of this evaluation, providing, in percent, the

amount of intra-page tree-edges and suffix-links when the index is laid out using each

strategy. These values were obtained with suffix-trees built on a 25 million base-

pair (Mbp) length DNA sequence drawn from Human Chromosome 2, 15 Mbp length

of C. elegans Chromosome 2, 25Mbp part of Drosophila Melanogaster genome, and, a

25Mbp symmetric Bernoulli sequence, with disk pagesize set to 4 KB. As these results

indicate, CO and SBFS layouts represent (negative) extremes in persistent suffix-tree

layout.

As a contrast, results for the suffix-trees ordered through our Stellar layout, described

in detail in next section, are also presented in Table 6.1. The suffix-link locality of Stellar

(40.0%) is close to that of CO, and tree-edge locality (62.6%) is comparable to that of

SBFS – clearly optimizing both forms of connections simultaneously.

Before we move on to the description of Stellar, we explore the reasons for this extreme

behavior of CO and SBFS layouts:
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Dataset Storage Suffix-Links Tree-Edges

Human Chromosome 2
CO 41.8% 0.2%
SBFS 0.1% 77.5%
Stellar 40.0% 62.6%

C. elegans Chromosome 2
CO 39.7% 0.3%
SBFS 0.01% 76.4%
Stellar 39.6% 61.6%

Drosopila Melanogaster
genome

CO 33.1% 0.006%
SBFS 0.0% 68.5%
Stellar 38.8% 59.2%

Symmetric Bernoulli
CO 27.6% 0.0%
SBFS 0.0% 69.8%
Stellar 38.8% 57.7%

Table 6.1: Static Edge and Link Localities

CO Layout

During the suffix-tree construction, two successive internal nodes v1 and v2 are created

typically as follows:

1. Traverse the suffix-link of the parent(v1) to reach ancestor(v2), and

2. Walk down the tree from ancestor(v2) using tree-edges, until a mismatch in the

tree-edge results in the creation of v2.

And, most importantly, the nodes v1 and v2 are related to each other through a suffix-

link, since they correspond to consecutive suffixes of the sequence processed so far by

the online construction. Due to this sequencing of tree node creation, a large fraction of

suffix-links in the tree tend to be contained within a page.

We performed similar experiments with McCreight’s construction algorithm [80], and

found that the results are exactly identical.

SBFS Layout

The SBFS ordering, in contrast, is designed to cluster the tree nodes related through

tree-edges into a diskpage. In a suffix-tree, the nodes related through a tree-edge share a
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common prefix – for e.g., in Figure 4.2, the leaf-node labeled 2 and its parent node share

the common prefix TA (also shared by leaf-node 6). Thus, SBFS layout translates into

a preferential clustering of suffix-tree nodes that correspond to substrings with common

prefixes. However, the nodes with a common prefix have very low probability of also being

related through a suffix-link – a situation that could occur only due to consecutive run of

a symbol in the sequence. Even though the alphabet-size of DNA sequences is small, due

to the pseudo-random distribution of symbols, long runs of a symbol are rare. Thus, the

suffix-link locality of SBFS is extremely poor.

6.3 Design of Stellar

The design of Stellar is based upon the relationship between nodes connected through a

suffix-link and the tree-edges under them, as shown through the following theorem:

Theorem 1 If v2 = sl(v1), then all the suffix-links originating from the nodes under v1

point only to nodes under v2.

Proof: Let the path label of v1 be defined as σ(v1) = xα, where x is a symbol from the

given alphabet Σ, and α is a non-empty substring of the string being indexed. Then,

σ(v2) = α, since v2 = sl(v1).

Now, consider the subtree under node v1, and note that the path labels of all

nodes under v1 have a common prefix defined by σ(v1). Therefore, we have,

∀u ∈ descendent(v1), σ(u) = xαβ, where β is a non-empty substring of the indexed

string. Similarly, ∀u′ ∈ descendent(v2), σ(u′) = αβ. Further, if u ∈ descendent(v1) then,

σ(sl(u)) = αβ. By definition of a suffix tree, there is only one path outgoing from root

whose label is α, and that terminates at v2. Hence the sl(u) has to be under the subtree

rooted at v2. This completes the proof. 2

In other words, if two nodes are related through a suffix-link, then all the nodes under

the source of this suffix-link have their suffix-link targets only in the subtree of the target.

This property gives us a way to reconcile between the edge and suffix-link locality in the

suffix-tree.
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6.3.1 Stellar Algorithm

A pseudocode of Stellar algorithm, that utilizes the structural relationship in suffix-tree

described above, is presented in Algorithm 3. The algorithm starts the suffix-tree traversal

at the root of the suffix-tree, and recursively traverses the subtree below. When a node

is visited, the suffix-link target of the node is visited next, if not already visited through

the tree-edges. Thus an internal node and its suffix-link target are treated as a “buddy”

pair, and are scheduled for recursive traversal in sequence. This results in subtree under

a node and the subtree under corresponding suffix-link target to be recursively processed

in succession – resulting in a large fraction of suffix-links that span these two subtrees to

be intra-page, in addition to the tree-edges of each subtree. When enough nodes have

been visited to fill a page, each node in the queue is scheduled for a separate recursive

Stellar traversal, until all the nodes have been processed.

It is easy to observe that Stellar’s complexity is linear in the size of the suffix-tree

being processed – a node is visited only once during the top-down traversal of the tree.

Additionally, it does not impose inordinate space overheads, as the only transient data

structures required during the layout process are a queue of node ids, and a bit flag for

each node of the tree indicating whether it has been visited or not. In our experiments

we found that the queue never needs to hold ids of more than 100 nodes, even over DNA

sequences exceeding 25Mbp.

In order to visually contrast the node clusterings produced by Stellar, SBFS and CO,

consider the intra-page connectivity diagram of a suffix-tree laid out using each of these

algorithms, presented in Figures 6.2, 6.3 and 6.4. These diagrams map the intra-page

tree-edges as dark solid lines and intra-page suffix-links using dark dashed lines. The

inter-page tree-edges and suffix-links are mapped in gray. The nodes of the suffix-tree are

presented in their order of distance from the root. The suffix-tree presented here is built

over a toy 100 basepair DNA sequence, with disk pagesize set to hold 5 nodes.

A visual inspection of these diagrams reveals that Stellar with 14 intra-page tree-edges

and 22 intra-page suffix-links, generates tree layouts that exhibit better overall locality.
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Stellar (r, B)
Input
r : Root of the subtree to be traversed
B : Capacity of the disk-page in terms of no. of nodes
Output
An ordering of the subtree under r

1: queue ←− r; {push root into the BFS queue}
2: nodecount ← 0; {initialize the counter}
3: while queue not ∅ do
4: r′ ←− queue; {remove head of the queue}
5: if r′ not visited then
6: mark r′ as visited and increment nodecount;
7: end if
8: for all c such that c is a child of r′ do
9: s ← sl(c);{s is the suffix-link of c}

10: if c not visited AND nodecount < B then
11: mark c as visited and increment nodecount;
12: queue ←− c;
13: end if
14: if s not visited AND nodecount < B then
15: mark s as visited and increment nodecount;
16: queue ←− s;
17: end if
18: end for
19: if nodecount ≥ B then
20: while queue not ∅ do
21: m ←− queue;
22: Stellar(m,B);
23: end while
24: end if
25: end while

Algorithm 3: Stellar Algorithm
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Figure 6.2: Intra-page Connectivity under Stellar
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6.3.2 Level-wise Locality Variation

In addition to the overall locality of tree-edges and suffix-links obtained by the layout

schemes, it is also critical to consider the distribution of such locality improvements in

the suffix-tree. If most of the locality gains are restricted only to a small portion of the

tree that may not be accessed frequently by the search process then the effectiveness of

locality improvements is significantly reduced.

Figure 6.5 illustrates the distribution of locality of tree-edges and suffix-links for the

suffix-tree over Human Chromosome 2 dataset (25 Million base-pair) under different layout

schemes, including Stellar. These values represent the number of local tree-edges (suffix-

links) at every level in the suffix-tree as a fraction of all the tree-edges (suffix-links)

outgoing from that level. For example, there are a total of 2,417,879 outgoing edges from

level 10, of which approximately 40% are intra-page due to the Stellar layout strategy.

As these graphs indicate, the tree-edge and suffix-link locality of all the three layouts

are comparable at the top portion of the suffix tree. However, as the depth of the suffix-

tree increases, the suffix-link locality of CO layout outperforms SBFS significantly, while

at the same time SBFS shows significantly better tree-edge locality over CO. On the other

hand, the locality due to Stellar algorithm is comparable to the best in both tree-edge

and suffix-link locality metrics. In the middle portion of the suffix-tree, due to the large

number of tree nodes, the locality fraction (of both suffix-links as well as tree-edge) is

lower than in the top and bottom parts of the tree under all the layout strategies.

6.3.3 Impact of Pagesize Variation

It could be thought, at first glance, that increasing the page-size could significantly impact

the locality property of layout algorithms. With increasing pagesize one can hold more

number of tree nodes within a page, which in turn could potentially result in more number

of tree-edges and suffix-links local to the page.

Therefore, we evaluated the tree-edge and suffix-link localities of all the three layouts,

with varying size of diskpage. The results are shown in Figure 6.6. As these graphs

show, the relative locality characteristic of all the three layout strategies does not vary
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Figure 6.6: Locality with varying Pagesize
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significantly, and Stellar continues to be close to the best for suffix-link or tree-edge locality

metric.

6.4 Evaluation Framework

In this section, we present the experimental setup used for evaluation of different suffix-

tree layouts during maximal substring searches between genomic sequences.

In our evaluation, we used a variety of real-world DNA sequences available from Gen-

Bank [9] repository as the datasets to build persistent suffix-trees. We present results for

suffix-trees built over a 25Mbp sequence drawn from Human Chromosome II. The results

over datasets show similar behavior, and have been omitted for purposes of clarity.

The suffix-tree implementation used in our experiments is based on the efficient array-

based tree node representation, which as shown in Chapter 5, has significantly improved

I/O characteristics than the alternative approaches. The indexing overhead in our imple-

mentation is about 22.5 bytes per symbol.

Suffix-tree nodes are densely packed into fixed size pages before they are committed to

the disk. The pages on disk are either internal pages or leaf pages, depending on whether

they store internal nodes or leaf nodes of the tree. During construction, the storage of

both internal nodes and leaf nodes is in their order of creation. Each page is committed

immediately to the disk, as soon as all the space in the page is utilized. Once the suffix-

tree is completely constructed, the resulting suffix-tree is traversed in the required storage

order and the reordered suffix-tree is built during this post-construction process. Unless

mentioned otherwise, all experiments were conducted with disk pagesize set to 4K bytes,

a typical pagesize in today’s systems.

6.4.1 Query Collections

In order to evaluate the performance of the search algorithms and the tree layout strategies

presented so far, we need to pay attention to the following characteristics of the query

sequences that have considerable impact on the search process.
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Query length: The length of the query impacts the overall time for locating all the

matching subsequences, as it directly determines the total number of iterations

(number of suffix-link traversals) during maximal substring location. In addition,

increasing length of the query could also result in larger number of matches, increas-

ing the overhead due to reporting of results.

Value of λ: As mentioned earlier, the maximal substring search algorithm takes as input

a user-specified threshold λ, that serves as the lower-bound on the length of a match

before all instances of the match are reported. If this value is too small, then

there could be a large number of “noisy” matches that get reported throughout the

database and if the value is too large then it will filter out potentially interesting

similarities. Hence, this value is subject to variations in the domain as well as the

task for which the suffix-tree indices are being utilized. The typical operational

region of this parameter in genomic DNA sequence retrieval software is between 9

(for distantly related genomes) and 50 (in case of whole-genome alignments), which

is used in our experiments to demonstrate the utility of the Stellar algorithm. A

popular genome alignment software, BLAST, uses a default value of 11 to trade

computational ease for some precision.

For DNA sequence searches, we used a collection of sequences from Expressed Se-

quence Tag (EST) database available from GenBank, as the base query collection. The

Human-EST collection consists of 856,008 sequences with average length of each sequence

being about 357.6 basepairs. The ESTs have been found to be extremely useful in high-

throughput location of genes, genome mapping, etc., and form a key data collection in ge-

nomics research. Using this Human-EST collection, we generated length-restricted query

collections of lengths 50, 100, and 200, by randomly sampling fixed-length sequences from

each of these sequences. In order to remove any further bias in ordering of EST fragments

generated, we randomly sampled 10,000 queries in each set to form three query collections,

hEST50, hEST100 and hEST200.
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Figure 6.7: Stellar Vs. CO

6.5 Experimental Results

In this section, we present results of our empirical evaluation of various disk layout strate-

gies for persistent suffix-trees during maximal substring search task. A buffer pool of 8MB,

which forms approximately 1.5% of the total size of the suffix-tree, was used and managed

using TOP-Q [8], a buffering policy specifically designed for use with suffix-trees.

6.5.1 Utility of Disk Layout

The relative performance of maximal substring search over persistent suffix-tree laid out

using Stellar against the CO layout is shown in Figure 6.7.

As these results indicate, Stellar layout results in a small fraction of the disk I/O

performed during search, when compared to the I/O incurred over suffix-tree in CO

layout. For e.g., at λ set to 11, Stellar results in only 30-45% of the disk I/Os incurred
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by the CO layout. Although, with increasing value of λ, this performance differential

reduces, Stellar never incurs more than 75% of disk I/O than CO layout.

When λ values are in the lower end of operational spectrum, e.g. set to 9, the overall

I/O cost of search is dominated by the overhead due to reporting of all results. As a result

of this, Stellar layout with larger fraction of local tree-edges clearly outperforms the CO

layout which practically provides no tree-edge locality.

6.5.2 Performance of Stellar over SBFS

We now turn our attention towards comparison of disk I/O performance of suffix-tree

layout schemes of Stellar and SBFS. In order to provide a normalized measure of per-

formance for both the disk layout strategies, we measure their relative performance gains

over the base disk I/O cost of searching over the suffix-tree in CO layout.

The relative performance of Stellar and SBFS with increasing values of λ is shown in

Figure 6.8. As these graphs demonstrate, Stellar layout provides steadily increasing I/O

gains with increasing values of λ. For example, at λ = 11, performance gain of Stellar

over SBFS is close to 20%, which increases to more than 50% at λ = 16.

6.5.3 Cardinality Evaluations

In many uses of suffix-trees, it is enough to know the cardinality of matches rather than

the identities of all the matches. For such uses of suffix-trees, it is interesting to see the

behavior of disk-layout strategies when the I/O cost associated with the result reporting

phase is neglected. The important point here is that the performance of maximal substring

search algorithm without the result reporting phase is independent of the value of λ – this

lower bound is used only to decide if the subtree below has to be traversed to report all

the matches.

Figure 6.9 shows the α values for the three EST query collections we have considered.

These results demonstrate that the performance of Stellar is significantly better than

SBFS – with more than 2-folds improvement in I/O gains, when subtree traversals are

not needed to report all the result identities.
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Figure 6.8: Stellar Vs. SBFS

Figure 6.9: Stellar Cardinality Evaluation Performance
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6.5.4 On-disk Search Performance

We now turn our attention to the impact of the suffix-tree layout on the time to execute

a batch of queries on the persistent suffix-tree. Figure 6.10 plots the time taken, in

minutes, for running a batch of 1000 maximal substring queries over a suffix-tree built

on Human Chromosome 2 dataset. Note that the y-axis is plotted in logarithmic scale.

These experiments were run on a HP-Compaq ES45 server running Tru64 Unix 5.1 with

6×72GB storage in RAID-0 configuration. We obtained the runtime profile, with 8MB

buffer managed using the TOP-Q policy, after turning off the buffering induced by the

operating system.

As these results indicate, persistent suffix-tree laid out through our Stellar organization

can perform searches significantly faster than the other strategies.

However, achieving this superior organization of LSTs comes with an associated, al-

though necessary, computational work. We built an persistent LST using techniques

presented in Chapter 5 over a 25Mbp fragment of Human Chromosome II with 32 MB

of buffer. And this LST was reorganized into an Stellar ordered LST, with the same

buffer size. Additionally, we utilized a transient translation table to map addresses of

internal nodes in the original LST into corresponding nodes in the reorganized LST. This

accounted for an additional additional 4×I bytes, where I is the number of internal nodes

in the tree. In this experiment, the LST construction was completed in a little more than

4.5 hours, while Stellar reorganization needed additional 20 hours. Therefore, based on

the characteristics of the application at hand, one should consider the layout strategies.

6.6 Search Performance over USTs

So far, we have studied the performance of maximal substring search over a persistent

suffix-tree that provides suffix-links to traverse across the tree efficiently. However, it

has been previously suggested that presence of the suffix-links in the tree results in poor

performance of suffix-tree construction, and techniques for persistent UST (un-linked

suffix-tree) construction have been proposed [61, 110, 123].
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Figure 6.10: Search Time Profile
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Figure 6.11: Gains due to SBFS Layout over UST

In this section, we first study the impact of disk layout on the search performance

over USTs, and then compare their performance against persistent suffix-trees that have

suffix-links, stored using Stellar disk layout. These experiments were conducted after in-

corporating additional index space optimization by removing the 4-byte suffix-link field

in each internal node (bringing the indexing overhead to about 20.0 bytes per symbol).

We used the persistent suffix-tree construction technique presented in [61], and the cre-

ation ordering of nodes generated during this construction comprises the baseline layout

– similar to the CO-layout presented earlier.

6.6.1 Impact of Layout on UST Search Performance

In the absence of suffix links, we applied SBFS layout strategy, as it provides the highest

tree-edge locality, and compared the performance gains obtained for MSSUST runs. Fig-

ure 6.11 plots the impact of disk layout, with increasing values of λ, over UST built over

Human Chromosome II dataset.

These results show that a careful layout of persistent USTs saves more than 50% of

disk accesses, and in the commonly used values of λ – ranging from 9 to 15, the I/O

savings are in the range of 60-70%.
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Figure 6.12: UST Vs. LST

6.6.2 Search Utility of Suffix-Links

We now turn our attention to relative I/O performance of search tasks over persistent

UST and persistent suffix-trees with suffix-links (i.e., LSTs – linked suffix-trees), thereby

quantifying the search utility of suffix-links. We compare the performance of UST laid

out using SBFS strategy against the performance of LST laid out using Stellar layout

strategy. Note that these layout strategies are optimized for the respective structural

variants of suffix-trees.

Figure 6.12 presents the relative I/O incurred due to MSSUST as opposed to searching

with LST, with increasing values of λ. As these graphs illustrate, searching over LST

clearly provides distinct advantages over performing the same task with UST. Despite the

superior space economy of USTs, it incurs more than 70% extra disk reads compared to

LSTs. As the value of λ increases, the performance gap widens – at λ set to 20, UST

incurs more than 2 times the disk I/O than LST.

In order to confirm the wider applicability of these results, we performed similar ex-

periments over UST and LST using the following two data-sequence and query-collection

pairs:

Drosophila EST over Drosophila Genome fragment. In these experiments, the

suffix-trees are built over a 25Mbp fragment of Drosophila genome (dataset D
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Figure 6.13: UST Vs. LST - Drosophila Melanogaster Genome

used in Chapter 5, and query collection was generated using the EST collection

of Drosophila using the same method we used for generating hEST query collection.

We distinguish this query collection as dEST. The results of the experiments are

summarized in Figure 6.13. These graphs confirm our earlier finding that LSTs

indeed provide significant I/O benefits over USTs which incur more than 2-times

additional disk accesses during searching for practical values of λ.

Human EST over C. elegans Chromosome II. Both the previous experiments were

conducted with both the query collection and the data-sequence drawn from the

genome of the same organism. Now, we present the results of experiments when

the query-set is drawn from an organism that is phylogenetically very distant from

the organism whose genome fragment is indexed. We built suffix-trees over the

Chromosome II genome fragment of C. elegans (dataset C of Chapter 5) and used

hEST query collection over them. Figure 6.14 summarizes the results. These graphs

show that even in this setting, I/O incurred by USTs is twice that of LSTs with

Stellar layout for all practical values of λ.

These results show the need to retain suffix-links in the persistent suffix-trees, contrary

to the persistent suffix-tree construction and maintenance recommended in [60, 61, 110,

123].
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Figure 6.14: UST Vs. LST - over C.elegans Chromosome II

6.7 Conclusions

Developing suffix-trees as a persistent sequence index structure has been an active area

in recent times, and many techniques have been proposed to significantly improve the

construction time. However, there has been virtually no research on evaluating and opti-

mizing the search performance of these persistent suffix-trees, the topic we have addressed

here in detail.

Specifically, we have evaluated the impact of suffix-tree layout on disk on the I/O

performance of common genomic search tasks, and shown through detailed empirical

evidence that existing index layout algorithms are not effective for storing suffix-trees on

disk. The layouts produced through these algorithms provide locality for only one of the

two traversal paths used during suffix-tree searches, and practically zero locality for the

other path.

Addressing this unsatisfactory state of affairs in persistent suffix tree layouts, we pre-

sented a layout strategy called Stellar, that optimizes the locality feature of both tree-

edges and suffix-links in the suffix-tree. The layouts produced by Stellar show close to

40% suffix-link locality, and 60% tree-edge locality, thus combining the strengths of the

two extreme layout schemes considered before.

Using real genomic DNA sequences drawn from GenBank repository, and querysets
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from Human-EST collection, we showed that Stellar incurs only about 30-40% of the disk

I/O incurred by a suffix-tree stored in its creation order. Even in extreme cases, more

than 25% disk costs are saved by laying out the persistent suffix-tree through Stellar.

Furthermore, Stellar shows almost 2-fold improvement over SBFS index layout strategy

in terms of disk I/O saved. The relative performance of Stellar significantly improves with

increasing values of λ (the minimum match length), thus highlighting the applicability

of Stellar in full-genome alignment software such as MUMmer, where values of λ are

typically in the range 20-50.

Finally, we presented results to show the utility of suffix-links in search tasks over

persistent suffix-trees. Our experiments indicated that suffix-link based searching requires

less than 50% of the disk I/O required for searching without suffix-links, despite space

overheads due to the presence of suffix-links in every internal node. Contrary to the recent

research in persistent suffix-tree construction where suffix-links have been abandoned to

result in faster construction techniques, these results highlight that suffix-links be retained

in the persistent suffix-trees in order to enable faster searches.



Chapter 7

Persistent Suffix-Trees for Proteins

7.1 Introduction

Previous chapters focused on the construction and storage organization of persistent suffix-

trees over DNA sequence collections. Although it is one of the most important application

domains for suffix-trees, there are many other areas where suffix-trees can be gainfully

employed. There are proposals to use them to index a variety of sequence collections, such

as protein sequences, textual data, time-series data [70] etc., as well as for 2-dimensional

raster images [44]. In these applications, unlike DNA data, the underlying alphabet size

could be rather large. For example, protein data comprises of an alphabet made of 20

amino-acid symbols.

In most of these applications, suffix-trees are used to accelerate similarity search algo-

rithms similar to those used in DNA sequence processing. Therefore, the suffix-link based

algorithms we considered in previous chapters are equally applicable in these domains as

well. With steady growth of the underlying data collections in each of these domains, there

is a clear motivation to study the persistent versions of suffix-trees in these applications.

Even though the algorithms for suffix-tree construction and searching continue to have

linear time and space complexities for sequences with larger alphabet-size, their absolute

performance is considerably affected due to the alphabet-size due to the following reasons:

1. In the case of array based implementations, effect of increased alphabet size appears

131
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in the space utilization of the suffix-tree. Each internal node of the suffix-tree will

now have a |Σ|-size array for outgoing child pointers. As the disk pagesize is fixed,

this increase in the node size adversely affects the packing density. Furthermore,

for a fixed length of the indexed sequence, the fraction of null pointers in this array

increases as the size of the underlying alphabet is increased.

(An approach that suggests itself for reducing the fraction of null pointers due to

large alphabets is to reduce the effective alphabet-size by splitting up the bits of the

symbols in the original alphabet and then build the suffix-tree over the equivalent

(but longer) sequence on the smaller alphabet. However, it is important to note that

this approach will not yield an equivalent suffix-tree directly – a substring match

in the lower alphabet space is not equivalent to a substring match in the original

alphabet space due to missing information on the symbol boundaries. Additional

steps are needed to ensure that the resulting substring match is indeed a true match

in the original alphabet-space as well. There are atleast two alternative solutions

based on this technique – Sparse Suffix-trees [68], and Word Suffix-trees [2]. Both

these proposals result in a significantly complex construction algorithm, and addi-

tional steps in the substring searching. Hence, in this thesis we do not compare with

these techniques.)

2. On the other hand, with linked-list representation, the |Σ| factor shows up in the

time complexity of the suffix-tree construction and search algorithms. Increasing

the alphabet size results in increased length of the sibling linked-list that needs to

be traversed for locating appropriate child node. This adversely affects the overall

I/O efficiency of suffix-tree algorithms.

Further, the distribution of symbols in strings of larger alphabet could be very different

from that of DNA, severely affecting the behavior of suffix-tree indexes. In addition,

increase in the alphabet size typically alters the profile of access patterns observed during

searching over the suffix-tree. The minimum match-length threshold, λ, is reduced as the

alphabet size increases to account for the increased domain of matching substrings. As a

result, TraverseSubtree needs to be performed much higher in the suffix-tree.
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Figure 7.1: SPROT: Distribution of Symbols

In the context of BODHI, protein sequences are an important large alphabet sequence

data that needs to be indexed for similarity searching. In this chapter, we present results

of the performance study of the techniques presented in Chapter 5 and Chapter 6, for

construction and searching over suffix-trees built over protein sequences. Specifically, we

make the following contributions:

Firstly, we show that the TOP-Q buffering strategy outperforms the LRU and 2Q

strategies, for suffix-tree building over protein sequences. These results demonstrate that

TOP-Q is an effective strategy for suffix-trees independent of alphabet size, over a variety

of datasets.

Next, we present performance numbers to further highlight the superiority of array

representation of suffix-tree nodes over linked-list representation, even in the presence

of large alphabets. Again, these results clearly show that, despite their reduced space-

economy, array representation is the implementation choice for persistent suffix-trees.

Finally, moving on to the search aspect, we show that storage organization has con-

siderable impact on the search performance of persistent suffix-trees on large alphabets.

In our experiments, we used a 25 million length amino-acid sequence dataset, SPROT,

derived from SwissPROT collection of protein sequences [120]. Although the individual

protein sequences are short, it is possible to build and use a single suffix-tree index for
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the complete database by concatenating the individual sequences together. Such a suffix-

tree is called a Generalized Suffix Tree, and commonly used for indexing a collection of

short sequences [53]. Accordingly, we generated the SPROT dataset by concatenating the

protein sequences. The distribution of symbols in the resulting data sequence is plotted

in Figure 7.1. As these values show, the symbol-wise distribution in the SPROT dataset

is highly skewed, in marked contrast to the pseudo-random nature of symbols in DNA

sequences.

7.1.1 Organization

The remainder of the chapter is organized as follows: In Section 7.2, we present results

for constructing persistent suffix-trees over protein sequences. Next, in Section 7.3, we

evaluate the performance of various storage organization strategies and their impact on

the search performance. Finally, we conclude in Section 7.4.

7.2 Suffix-Tree Construction over Protein Data

The results of our experiments with the SPROT dataset are summarized in Figure 7.2.

As in Section 5.7.1, in these graphs we present results for two partitioning schemes of

the available buffer-pool, namely, Equal-Partition (4000 buffers each for internal and leaf

pages) and Skewed-Partiotioning (7950 buffers for internal pages and 50 buffers for the leaf

pages). The graph does not include hitrates for 2Q, since they were very similar to LRU.

As these graphs demonstrate, with increasing length of the indexed sequence, the hitrate

of TOP-Q continues to gain over that of LRU. Further, TOP-Q responds favourably to

the increased bias for internal nodes in the the buffer pool allocation. Thus, the benefits

of TOP-Q are applicable not only with small-alphabet sequences such as DNA, but also

with large-alphabet sequences.



Chapter 7. Persistent Suffix-Trees for Proteins 135

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30

H
it

 R
at

e

Sequence Length (in MB)

Array Implementation
TOP-Q, Equal Partition

LRU, Equal Partition
TOP-Q, Skewed Partition

LRU, Skewed Partition

(a) Array Implementation

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30

H
it

 R
at

e

Sequence Length (in MB)

Linkedlist Implementation
TOP-Q, Equal Partition

LRU, Equal Partition
TOP-Q, Skewed Partition

LRU, Skewed Partition

(b) Linkedlist Implementation

Figure 7.2: SPROT: Hitrates during Construction
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7.3 Storage Organizations over Protein Data

We now turn our attention towards the performance of suffix-tree searching, under dif-

ferent disk layout schemes. The locality results for the suffix tree over SPROT dataset,

under different disk layout strategies is shown in Table 7.1. As these numbers demon-

strate, Stellar shows a locality profile similar to that for DNA sequences. Similarly, the

variation of the locality with the size of the diskpage is illustrated in Figure 7.3. The

graphs in Figure 7.4 illustrate the depth-wise distribution of the locality profile through-

out the suffix-tree. In contrast to the similar graphs for DNA sequences in Figure 6.5

earlier, the locality distribution displays a sharp variation at depths ranging from 0 (root

of the suffix-tree) to 5.

Dataset Storage Suffix-Links Tree-Edges

SPROT
CO 49.2% 0.2%
SBFS 0.1% 56.1%
Stellar 31.6% 49.6%

Table 7.1: SPROT: Static Edge and Link Locality

It should be noted that due to the choice of array-based representation of the suffix-

tree, the size of the internal node is significantly larger (93 bytes as opposed to 29 bytes

for DNA), leading to much smaller packing density of nodes. As a result, the scope for

packing nodes related via either a tree-edge or a suffix-link into the same page is reduced,

thus lowering the absolute value of locality.

7.3.1 Protein Substring Searches

For the protein sequence searches, an amino-acid query set of 10,000 randomly sampled

sequences from translated Human UniGene non-redundant set of gene-oriented clusters

was chosen [128].

Although the common search task over protein sequence databases is maximal sub-

string location, the parameters used in these search tasks differ significantly from those
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Figure 7.3: SPROT: Locality with varying Pagesize
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Figure 7.5: SPROT: Relative Edge Utilization

used in DNA database search, to account for the larger alphabet. Specifically, the λ

values are much smaller – the BLASTP package uses default value of 3. As a result, the

utilization of suffix-links during the search process is significantly less, and the search cost

is dominated by the use of tree-edges for reporting of results.

The relative utilization of tree-edges with respect to suffix-links during the substring

search task is illustrated in Figure 7.5. As these graphs indicate the tree-edge utility

is significantly higher in the typical operating range of λ values. Thus, higher tree-edge

locality is especially beneficial in the case of protein datasets.

Impact of Disk Layout

The relative performance of maximal substring search over persistent suffix-tree on

SPROT dataset, laid out using Stellar against the CO layout is shown in Figure 7.6.

For low values of λ, the I/O cost is dominated by the TraverseSubtree function. Due to

the lack of locality of tree-edges in CO-layout it suffers from bad search performance in

this range. Stellar on the other hand provides for good tree-edge locality, leading to signif-

icant I/O gains. Note that at λ = 7, the performance differential between CO and Stellar

is very small – due to the fact that the average depth of the suffix-tree is ≈ 7.54, which

results in negligible cost due to TraverseSubtree, even for CO layout. Thus, the main
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Figure 7.6: SPROT: Performance of Stellar over CO

component of I/O cost is that of the main search function in MaximalSubstringSearch,

dominated by the suffix-link accesses. Since, CO-layout provides good suffix-link locality,

the relative performance improvements due to Stellar are not very significant.

Stellar Vs. SBFS

Due to the increased tree-edge utilization in the operating range of λ values for protein

substring similarity searches, it seems natural to expect SBFS which localizes only the

tree-edges to perform much superior to Stellar.

The relative performance of Stellar over SBFS are shown in Figure 7.7. As expected,

in the extreme low-value range of λ, the performance of SBFS is clearly superior to

that of Stellar – however, with increasing length of the query sequence this performance

gap decreases. As the value of λ increases, the cost of suffix-link traversals comes into

prominence, and since Stellar optimizes these traversals, it starts to gain in performance

over SBFS. For moderate values of λ (≥ 4), Stellar is quite competitive with SBFS.
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Figure 7.7: SPROT: Performance of Stellar over SBFS

7.3.2 Utility of Suffix-Links

Shifting our focus to the utility of suffix-links for large-alphabet sequences, it seems natural

to expect that, due to the small value-range of λ, the UST-based methods hold advantage

over LSTs. The USTs clearly provide better space economy (a reduction of 4-bytes per

internal node), and TraverseSubtree being performed higher up in the tree the search cost

is dominated by the tree-edge traversals.

Figure 7.8 plots the relative disk I/O performance of UST and LST, with increasing

value of λ. Both the indexes, built over the SPROT data, are laid out using the SBFS

strategy that is shown to optimize the performance. As these graphs indicate, the LST-

based searches continue to provide improved disk I/O performance over searching using

UST, despite small λ values and large alphabet-size. For example, with λ set to 3-4

(commonly used with BLASTP searches), the UST searching incurs about 80% extra

disk accesses than LST. These results clearly indicate that benefits obtained due to the

retention of suffix-links are independent of the alphabet-size.
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Figure 7.8: SPROT: UST Vs. LST

7.4 Conclusions

In this chapter, we investigated the applicability of techniques for speeding up persistent

suffix-trees presented in the earlier chapters over Protein sequences, which have signifi-

cantly different alphabet characteristics than DNA sequences.

We showed that the TOP-Q buffering strategy can be used also over protein sequences

that have much larger alphabets. We also showed that even in the presence of skewed

distribution of symbols in the sequence, the TOP-Q strategy is superior to other buffering

strategies.

Next, we presented results to highlight the performance benefits gained through array

representation of suffix-tree nodes over linked-list representation, in the presence of large

alphabets, and with variable skew in the symbol distribution. These results showed that

improved performance due to array representation is not limited to the small alphabets,

thus justifying their use as a general physical implementation scheme for persistent suffix-

trees.

Moving on to the evaluation of storage organizations, we showed that despite a signif-

icant skew in the utilization of tree-edges over that of suffix-links over protein sequence

searches, Stellar organization is shown to very competitive to SBFS strategy. In com-

parison to the CO storage organization, Stellar saves close to 90% I/O during searching.
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Again, these results bring out the applicability of our techniques across the spectrum of

biological sequences.



Chapter 8

Performance Evaluation of BODHI

We have evaluated the performance of BODHI on a test-bed of typical queries in the

biodiversity domain. These consist of queries over both single-domains (such as taxonomy,

spatial or sequence domains) and multiple domains – i.e., queries similar to Query 1

presented in the Introduction. Moreover, since spatial data forms a large fraction of data

and is traditionally considered by the biodiversity researchers to be the main component

of the query processing time, we studied the performance of the spatial component in

detail. In particular, we evaluated the spatial data handling capabilities of BODHI over

the datasets and queries of the SEQUOIA 2000 regional benchmark [118], a standard

benchmark for spatial databases.

The performance numbers reported were generated on a Pentium-III 700MHz pro-

cessor, with 512MB memory and an 18GB 10000-RPM SCSI hard disk (IBM DDYS-

T18350M model), connected with Adaptec AIC-7896/7 Ultra2 SCSI host adapter. In

order to reduce the effects of Linux’s aggressive memory mapping of files, we flushed the

benchmark database each time with an I/O over a large database.

The rest of the chapter is organized as follows: In Section 8.1, we describe the bio-

diversity datasets used in our experiments. Then, we present the performance profile of

BODHI on these datasets for single and multi-domain queries in Section 8.2. The spatial

data processing performance of BODHI, evaluated with SEQUOIA 2000 benchmark, is

presented in Section 8.3.

144
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8.1 Description of Datasets

Although there is no paucity of benchmarks for evaluating various functional and per-

formance features of databases, many features required in biodiversity information sys-

tems are not handled by any benchmark in an unified manner. For example, the OO7

benchmark [20] is designed for solely evaluating object-oriented database performance.

However, it does not have queries that take into account the effects of spatial and se-

quence operators in conjunction with object queries. Moreover, it does not exercise the

lengthy sequence of joins due to long path-expression traversals that occur routinely in

biodiversity workloads. As a result, we needed to develop a benchmark suite that closely

models the range of data and query workload characteristics in biodiversity domain.

A serious hurdle that we faced in the design of the benchmark suite was the unavail-

ability of large-scale digitized taxonomy data collections with the collaborating domain

scientists, that can be effectively used in performance evaluation experiments. 1 This is

because the domain experts we collaborated with have the bulk of their data in legacy

formats – in many cases on “herbarium sheets”2, and in text-books. While the digitization

of this data is going on, we obtained the taxonomy data of about fifteen closely studied

plant species that are marked endemic to the Western-Ghats region of Southern India, in

a format that was amenable for loading. Table 8.1 lists the details of these select species,

that form the basis of our benchmark data suite. This limited amount of data is scaled

by boosting with synthetic data, generated with inputs from domain experts.

The data used in our experiments conforms to a biodiversity object model, which is

presented in part as an object diagram in Figure 3.2. As shown in the object model, the

schema is hierarchical in nature and consists of aggregation paths, inheritance structures

over object types, spatial and genome sequence components. The well known taxon-

omy aggregation path of Order-Family-Genera-Species forms the backbone of the model.

Each Species has a set of identifying characters (IdentChar), and there are many sub-

1Recently, a handful of web-based taxonomy data sources, that enable extracting the information
stored in them, have come up. The domain scientists we collaborate with, are in the process of cleaning
and curating this data, which can be populated into our system.

2These are sheets that contain a plant specimen and its details.
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Order Family Genera Species
Euphorbiales Euphorbiaceae Aporosa bourdillonii
Euphorbiales Euphorbiaceae Aporosa lindleyana
Laurales Lauraceae Actinodaphne bourneae
Laurales Lauraceae Actinodaphne lanata
Laurales Lauraceae Actinodaphne lawsonii
Laurales Lauraceae Actinodaphne malabarica
Laurales Lauraceae Appolonias arnotti
Magnoliales Magnoliaceae Michelia champa
Primulales Myrsinaceae Aridisia sonchifolia
Polemoniales Convolvulaceae Ipomoea campanulata
Rutales Meliaceae Aglaia barberi
Rutales Meliaceae Aglaia lawii
Rutales Meliaceae Aglaia indica
Rutales Meliaceae Aglaia jainii
Rutales Meliaceae Aglaia simplicifolia
Rosales Chrysobalanaceae Atuna travancorica

Table 8.1: Details of Endemic Plant-species

characteristics that are inherited from this. The spatial component of the model consists

of a collection of reported habitat areas for each Species. Also associated with each Species

is a collection of DNA sequences that are used to study the evolutionary pathways among

the species by locating homologies (sequences which have a high likelihood of sharing a

common ancestor). We describe the individual components of the benchmark dataset

below:

Taxonomy Data: The real data available for about fifteen closely studied Plant species

was scaled with synthetically generated data. The object relationships in taxonomy

and characteristics hierarchies were generated through the use of heuristic proba-

bility of association at each optional relationship (uniform distribution in the range

of 1-19 at each level of the hierarchy [87]). In case of collections in the aggregation

path, the branch factor of the collection was also uniformly distributed.

Spatial Data We used the technique proposed in [67] to generate a synthetic 2-

dimensional spatial data. The data consists of rectangular regions, whose centers are
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Element No. of Tuples Overall Size(in KB)

Order 4 0.6
Family 46 7.1
Genera 496 76.0
Species 5155 1153.1
FlowerChar 5155 564.0
Habitats 5155 607.0
InfloChar 5 20.4
EMBLEntry 51550 2902
Compressed Genomic Sequence 51550 4743

Total 10073.2

Table 8.2: Statistics of the Synthetic Dataset

uniformly distributed over a unit square. The overlap between rectangular regions

can be controlled by specifying the distribution of their height and width values.

It should be noted that this dataset consists of only rectangular regions, while in

reality we have to handle non-convex polygonal regions as well. The performance of

spatial data handling over real dataset (involving non-convex polygonal regions) is

evaluated separately through the SEQUOIA 2000 benchmark. Each species object

generated above is associated with a synthetically generated polygon that represents

the habitat of the species.

Genome Data In the case of Genome sequence data, we utilized publicly available data

through the GenBank repository. In our experiments, we made use of a randomly

selected sample of “expressed sequence tags” (ESTs) of various species available

from the BLAST database of EMBL GenBank [41].

The statistics of the resulting benchmark dataset, which conforms to the schema illus-

trated in Figure 3.2, are summarized in Table 8.2. We consider a set of 5 queries over this

dataset, spanning the domains of taxonomy, spatial and genome data, to illustrate the

capabilities of BODHI in handling these domains. In addition, the performance numbers

of these queries provide an indicator towards overall expected performance of the system.

We use the response time as the metric of evaluation in our experiments.
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Id Time

Taxonomy Query-1
73 min. (Without Path-Dictionary)
0.5 min. (With Path-Dictionary)

Genome Query-1 0.2 sec.

Genome Query-2
≈ 2.5 min. (Without Suffix-tree)
4.5 sec. (With Suffix-tree)

Table 8.3: Performance Numbers for Single-domain queries

Id No Index Path-Dictionary Spatial& Suffix-tree &
Path-Dictionary Spatial &

Path-Dictionary

MDQ1 26.99 sec. 11.13 sec. 2.1 sec. –
MDQ2 8275.66 sec. 8264.12 sec. 8252.2 sec. 135.2 sec.

Table 8.4: Performance Numbers for Multi-domain Queries

8.2 Biodiversity Queries

We now describe the set of queries considered to illustrate the capabilities of BODHI

and present the performance numbers over each of these queries. The biodiversity query

collection consists of two categories: (i) Single-domain queries – that are restricted to a

single data domain (taxonomy, spatial or genome data), and (ii) Multi-domain queries –

that combine multiple data domains in a single query. As we have explored the spatial

query performance, in detail, with SEQUOIA 2000 benchmark in the subsequent section,

we present only the taxonomy and genome sequence based queries under single-domain

queries here.

The performance numbers for the queries are summarized in Tables 8.3 and 8.4.

8.2.1 Single-domain Queries

Taxonomy Query-1: Find the names of all species that have the same Inflorescence

characteristic in their Flowers as that of “Michelia-champa”.

With reference to the bio-diversity data model shown in Figure 3.2, this query

performs a three level path traversal over the aggregation hierarchy of Species,
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Flower and Inflorescence Characteristics. The performance results in Table 8.3 for

this query show that without any indexing strategy for accessing the aggregation

paths, the query execution times are unacceptably high (73 minutes) – especially

considering the modest size of the dataset. The reason for this high evaluation time

of this query is due to the choice of a nested loop join used for evaluating this query.

Clearly it would be more beneficial to choose either the sort-merge join or the hash

join for the purpose. However, we were not able to use these due to the limitations

imposed by the version of SHORE and λ-DB used in building BODHI. The hash join

was not supported in λ-DB and the sorting of intermediate streams was not possible

in the version of SHORE we used. The performance of the query execution improves

by two orders of magnitude with the presence of a Path-Dictionary index over the

queried path, taking only about 30 seconds. As discussed earlier in Section 3.4,

the Path-Dictionary maintains a compact materialization of joins along the queried

path, preventing the repeated computation of these expensive joins.

Genome Query-1: Retrieve all DNA sequences of Michelia-champa.

The DNA sequences are stored encoded, using context-free encoding, in a separate

storage. This encoding increases the disk-memory bandwidth and enables the se-

quence similarity algorithms to operate in this encoded domain itself. At the same

time, there is an overhead of decoding them before presenting to the user. The per-

formance numbers for this query give an estimate of the delay involved in decoding

these sequences.

Genome Query-2: List names of all Species that have a DNA sequence within a

BLAST score of 70 with any sequence of Michelia-champa.

The computation of BLAST scores over a database could be a time consuming task,

especially in the absence of any indexing strategy for speeding these queries. This is

evident from the corresponding entries in the Table 8.3. The timing for this query –

which results in 10 BLAST computations – is about 2.5 minutes! With a persistent

suffix-tree index built on the sequence collection, this reduced dramatically to mere
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4.5 seconds, an improvement of almost 30 times in query execution speed.

8.2.2 Multi-domain Queries

Multi-domain Query-1: Find the names of all Species sharing a common habitat and

having the same Inflorescence characteristic as Michelia-Champa.

This query, which is common among ecologists, is targeted at the combination of

hierarchical data of Taxonomy domain, and associated Spatial data. The query

evaluates the combined effectiveness of the Path-Dictionary index and R∗-Tree in-

dexes available in BODHI. The performance numbers provided in Table 8.4 are for

the optimal query plan which performs the spatial overlap before computing the

joins over the aggregation paths. Since spatial overlap is highly selective in the ex-

isting dataset, the number of path aggregation traversals are reduced to a very small

number. As a result, we see that even though this query is more complicated than

Taxonomy Query-1, it takes less than 0.6% of time taken for Taxonomy Query-1

even in the absence of the Path-Dictionary index. The presence of Path-Dictionary

reduces the execution time further, from 26.99 seconds to 11.13 seconds – a reduc-

tion of 58%. In this case, the execution times are dominated by the spatial overlap

computation. We can see this clearly by looking at the performance of the query

when both R∗-Tree and Path-Dictionary indexes are present. The query time is just

around 2 seconds, almost an 80% improvement. This clearly indicates that both

indexing strategies are extremely useful for such queries.

Multi-domain Query-2: Retrieve names of all pairs of Species sharing a common

habitat, having same Inflorescence characteristic and having a DNA sequence within

BLAST score of 70 of each other.

This query, which extends the Multi-domain Query-1 by adding an extra predicate

for the BLAST score computation for each of the sequences in the target species, is

similar to the “goal” query that we presented earlier as Query 1 in the Introduction.

Referring to Table 8.4, we see that the execution times without a suffix-tree index
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are close to 3 orders of magnitude higher than those of Multi-domain Query-1 – due

to the additional 50 BLAST computations. On the other hand, the suffix-tree index

based BLAST computation reduces the gap to within acceptable limits, evaluating

the query in close to 2 minutes. The reduction in execution times due to other

access-methods are approximately the same as in Multi-domain Query-1, about 11

seconds in presence of Path-Dictionary index and by a further 10 seconds in presence

of both R∗-Tree and Path-Dictionary indices.

8.3 Evaluating Spatial Data Handling

The evaluation of queries over spatial data has traditionally been considered as a highly

compute-intensive operation, and many indexing strategies have been proposed to improve

the performance of these queries. The SEQUOIA benchmark has been quite popular for

evaluating the performance and capabilities of spatial databases. It consists of a set of

10 queries over a schema involving spatial objects (such as polygons, points and graphs)

and also bitmap (raster) objects. As we do not have support for bitmap data formats in

BODHI, we have chosen to ignore the raster dataset and the queries (2),(3),(4) & (9),

which involve these objects. The vector benchmark data consists of 62556 Point objects,

58585 Polygons and 201659 Graph objects. Table 8.5 summarizes the response times (in

seconds) for the queries on this data. We have compared BODHI’s performance with

Paradise [30], a spatial database system also built on the SHORE storage manager, and

Postgres [119], a popular free object-relational database. The numbers given for these

two systems are taken from those reported in [30].

The SEQUOIA benchmark results in Table 8.5 show that BODHI is very close in

performance to that of Paradise, which is a specialized and highly optimized spatial

database system. Even though the hardware platform used by the two systems are difficult

to compare, it should be noted that both Paradise and BODHI use the same underlying

storage manager (Shore). In addition the following points regarding numbers reported

under BODHI should be noted: (i) We use file-based storage management instead of using

raw-disk as done by Paradise system; (ii) The optimal physical query plan is generated
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through a generic object-oriented query processor; (iii) The type-system is user-defined

whereas in Paradise the basic type system of SHORE has been augmented; and, (iv) the

size of the buffer pool used by SHORE is the default value – 320KB, whereas Paradise

used 16MB.

Id BODHI BODHI Paradise
(with R*-Tree) (with Hil. R-Tree)

1 5742.0 4662.0 3613.0
(R*-Tree: 1342.0) (Hil. R-Tree: 262.0)

5 0.12 0.11 0.2
6 8.0 8.0 7.0
7 0.66 0.7 0.6
8 9.7 9.6 9.4
10 11.0 10.8 Not supported

Table 8.5: SEQUOIA Benchmark numbers (in seconds)

We now present the chosen set of SEQUOIA queries and their performance statistics.

We also explain a few of these queries and highlight their importance in a typical set of

bio-diversity query workloads.

Sequoia 1 – Dataloading and Index creation. This query populates the database

from a given set of datafiles, and is expected to exercise the bulk-loading facility in

the database. At the time of writing, we do not a bulk-loading feature in BODHI,

resulting in a transaction commit for each object hierarchy. Therefore, the table

represents only an upper bound on the dataload and indexing times for the spatial

component. Referring to Table 8.5, we see that this is the only benchmark query

in which BODHI is far worse than Paradise which supports bulk-loading facility.

However, we don’t see it as a major bottleneck in BODHI, since the bio-diversity

databases are not expected to have high rates of bulk data updates. Instead, these

databases are highly query-intensive and hence it is important to have fast query

processing speeds. In addition, we expect improvements in performance when a

bulk-loading scheme is put in place for BODHI.
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Sequoia 5 – Select a point based on its name.

Sequoia 6 – Select polygons overlapping a specified rectangle. This is one of

the typical spatial queries asked in ecological studies where a geographic region

is split into a set of grids and the researchers would want to identify the species

whose previously recorded habitat boundaries overlap with the grid being studied.

This could be important in identifying species whose co-existence in a region is to

be targeted for study. The performance of spatial operators such as overlap depend

directly on the performance of implementing these operators on a spatial index

such as R∗-Tree or Hilbert R-Tree. Since the R∗-Tree implementation of BODHI is

the same as that of Paradise (both use the index provided by the SHORE storage

manager), we don’t see much difference in the query execution performance.

Sequoia 7 – Select polygons greater than specified area, contained within a

circle. We see similar queries occurring in bio-diversity studies with variations in

the area selection clause of the query. The area of a polygon is provided through

a derived attribute – computed based on the co-ordinates of the polygon. This is

extendible to allow for selection over arbitrary derived attributes over which an index

can be built. Thus, in ecological study databases, we get variations of the query

that locate all the habitats that are near a study center, with a derived attribute

value (such as bio-mass index of the habitat, etc.).

This query reflects the combination of B-Tree and spatial index based query pro-

cessing. The order in which this query gets evaluated – whether the B-Tree lookup

or the R∗-Tree based overlap selection is made as the first step – makes a big differ-

ence in the query answering times. The usage of query optimizer which maintains

cost statistics and uses it to arrive at the final evaluation order is also tested in

this query. The numbers presented in Table 8.5 are for the optimal plan generated

by the query processor of BODHI, which is to perform the R∗-Tree based overlap

selection first and then the B-Tree-based polygon area selection.

Sequoia 8 – Select polygons overlapping a rectangular region around a point.
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Id Time

11 3.36 sec.
12 51 sec.
13 66 min.

Table 8.6: Performance over Paradise Queries

Sequoia 10 – Select points contained in polygons with specific landuse type.

We also executed the above Sequoia benchmark queries with Hilbert R-Tree in place

of R∗-Tree. The results obtained are shown in Table 8.5. The building times of Hilbert

R-Tree were quite low in comparison to that of R∗-Tree, and at the same time provide

almost the same performance. The numbers shown are for Hilbert R-Tree which employs

s-to-(s+1) split policy on overflow, with s = 2. Even though the performance of the

Hilbert R-Tree could be improved by increasing the value of s, the index creation times

increase sharply with s. Hence, the current choice of split policy was chosen to optimize

on the index building time and the performance of the index over benchmark queries.

In addition, BODHI also supports the spatial aggregate operator Closest, on the lines

of Paradise spatial data management system. This operator was used in executing two

spatial aggregate benchmark queries given by Paradise system, Query-11 and Query-12,

in [96]. For completeness, we have also included Query-13, which is not an aggregation

query, but is a spatial join in benchmark queries of Paradise. But we cannot compare the

performance numbers obtained in BODHI with those reported in [96], as the benchmark

datasets are completely different in both schema and the scale (they used 10 years of 8

Km. resolution AVHRR satellite images obtained from NASA, and DCW global data set

containing information about roads, cities, land use, drainage properties etc.). Hence, we

present the numbers in an absolute sense in Table 8.6.

Paradise 11 - Select closest graphs (polylines) to a given point. This query re-

quires the evaluation of the spatial aggregate “Closest” using available index struc-

tures. This aggregation operator is implemented as an iterative searching for the

closest polyline (Graph in Sequoia dataset). At each iteration step, a box is con-
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structed around the given point, and all polylines that overlap with the box are

located using the spatial index. If no polylines that satisfy this constraint are found,

then dimensions of the box are increased and another iterative search is performed.

When we obtain a non-null candidate set through this step, we compute exact dis-

tances between the point and the polylines in the candidate set, and the closest

polyline is determined. The performance of this query depends heavily on the loca-

tion of the point and the distribution of polylines in the region. If the polylines are

densely packed, we obtain a non-null candidate set within a few iterations (most

likely in the first iteration itself), thus getting the target polyline instantaneously.

The performance numbers presented in Table 8.6 were obtained over a sample of

100 points from the Sequoia dataset.

Paradise 12 - Select closest graphs to every point. This query is an extension of

the previous query, and performs a spatial aggregate on a cross product of two

relations (in this case polylines and points). For each point in the Sequoia dataset,

we compute the closest polyline, by running the previous query.

Paradise 13 - Select all polylines which intersect with each other. This query

joins two large spatial relations and tests the efficiency of the system’s spatial join

algorithm. The cardinality of the polyline extents in Sequoia benchmark is very

high, with 201659 graph objects in the dataset. In order to answer this query, we

need to perform a self spatial-join of this extent, which is highly expensive. 3 This

is clear from 66 minutes reported in Table 8.6, to answer this query.

8.4 Conclusions

In this chapter, we presented a detailed evaluation of the BODHI system, both in terms

of the range of its querying capabilities as well as its performance profile. The complex

multi-domain query, presented in the Introduction as Query 1 is shown to be computable

3Even in [96], the performance results, obtained with parallel disks and multiple processors, indicate
that Query 13 takes an order of magnitude more time than Query 12.
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in approximately 2 minutes, in presence of the access-structures provided by the BODHI

system – the Path-dictionary index for aggregation path traversals, Hilbert R-Tree for

spatial data handling and the Persistent Suffix-tree over genomic DNA sequences. The

same query would have taken more than 137 minutes, without utilizing any of the index

structures. Further, we also presented a detailed evaluation of spatial data handling

within BODHI, making use of the well-known SEQUOIA 2000 benchmark. These results

showed that the BODHI system is comparable in performance and in the supported query

repertoire to Paradise, a specialized spatial data management system.
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Conclusions and Future Research

9.1 Summary of Contributions

In this thesis, we have investigated the design and implementation of a holistic bio-

diversity database, BODHI, that can be productively used by modern day biologists.

This system addresses an urgent need for information management systems that can in-

tegrate a wide range of data associated with bio-diversity studies, including taxonomy

information, spatial distributions, and genome sequence information. Focusing on ac-

celerating the computationally expensive sequence processing capability of BODHI, we

presented techniques to efficiently construct persistent suffix-trees using a combination

of appropriate physical representation and a novel buffering strategy called TOP-Q that

takes into account the behavior of traversals during suffix-tree construction. Further, we

proposed a new storage organization, STELLAR, for persistent suffix-trees that caters

to the combined traversal of tree-edges and suffix-links during searching over suffix-trees,

and optimizes the disk I/O performance. We summarize our contributions in each of these

areas below.

9.1.1 Design of BODHI

Modern bio-diversity studies generate and utilize a variety of inter-related data types

forming deeply nested hierarchies. The queries that span these hierarchies need to perform

157
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multiple joins and, in many cases, the join-path could contain spatial or sequence similarity

predicates, thus hindering efficient evaluation.

A multitude of tools have been deployed to handle each of the domains involved in

isolation, and wrapper-based integration systems are being built to provide a functional

integration. However, to the best of our knowledge, there has been no effort to support

the diverse data-types efficiently under a single database platform. In this thesis, we

presented the design and implementation of BODHI, a holistic approach to this problem

of bio-diversity data unification.

BODHI is a native object-oriented database system that seamlessly integrates multiple

types of data occurring in biodiversity studies. To the best of our knowledge, BODHI is

the first system to provide such an integrated view of diverse biological domains ranging

from molecular to organism-level information.

In addition to providing a functionally comprehensive query interface, BODHI achieves

high performance by employing a variety of specialized access structures, such as Multi-

key Type Index, Path-dictionary Index, R∗-Tree, Hilbert R-tree, that are reported in the

research literature for handling predicates over taxonomy hierarchies and spatial data.

The Path-dictionary index was extended from its original proposal, to support N:M re-

lationships as well as bags and sequences in the aggregation, a commonly found feature

in the biodiversity schema. In addition, these indexes were implemented to satisfy the

dual needs of efficiency and the ability to extend and improve the system. While these

index structures are efficient in their respective domains, there are very few proposals for

sequence indexing to accelerate a large class of biological sequence processing tasks.

In order to overcome the resulting performance bottleneck of sequence similarity

queries, BODHI provides persistent version of suffix-trees, the ubiquitous main-memory

sequence indexing structure. The persistent suffix-tree index is useful in a number of

sequence querying applications, and provides an accurate indexing solution for biological

sequences. We are not aware of any other database system that incorporates persistent

suffix-trees as a first class sequence indexing strategy.
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9.1.2 Efficient Construction of Persistent Suffix-tree Indexes

In the field of computational molecular biology, the suffix-tree has been considered a

defacto index structure for biological sequence processing. However, its usage had been

limited to small-sized datasets due to its large space requirements. With increase both in

the volume of biological sequence data as well as the usage of sequence processing tasks,

it has been considered essential to support suffix-tree indexes within persistent store –

hitherto considered impractical using the standard construction algorithms.

We addressed this issue by designing a novel buffering policy called TOP-Q, that

takes into account the nature of traversals during suffix-tree construction. In addition,

we showed that the much preferred implementation of suffix-trees that uses a linked-list

of sibling nodes is much more disk I/O intensive than a simpler array representation of

suffix-trees – despite the increased space overhead due to the latter.

A significant advantage of our proposal is that all the existing suffix-tree based bioin-

formatics tools can be migrated to persistent store without having to reinvent or reimple-

ment the algorithms. This is due to the fact that unlike alternate proposals for suffix-tree

building [61, 123], we completely retain all the structural elements of suffix-tree. In par-

ticular, the suffix-links between internal nodes, which play an important role in linear time

construction and subsequent querying over suffix-trees, are retained in our technique.

9.1.3 Storage Organization of Suffix-tree Indexes

Taking the next logical step in improving the utility of persistent suffix-trees, we addressed

the issue of optimizing, in terms of disk I/O, the search tasks over the suffix-trees. We

approached this issue in the same spirit as the previous work – i.e., to tune the parameters

of the environment in which the suffix-trees are deployed, without modifying either the

structure or the algorithms over the index.

Specifically, we presented a linear-time, top-down algorithm called Stellar, to reorder

the persistent suffix-tree nodes such that the localities of both suffix-link and tree-edge

based traversals during search is improved. We observed close to 60-70% reduction in

I/O incurred during searches over DNA sequence collections when the suffix-tree is stored
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using Stellar strategy.

We also presented results to show that searching of persistent suffix-trees without

utilizing suffix-links is far more expensive than the searches involving suffix-links. These

results highlight the utility of retaining suffix-links in persistent suffix-trees.

9.2 Future Research

The work presented in this thesis can be extended in a number of ways, some of which

are listed here:

1. Multiple and Evolving Taxonomy. The taxonomic organization is constantly

evolving, due to the introduction of novel techniques for discovering the evolutionary

and ecological relationships between organisms [99]. It is important to not only

incorporate the ability to handle the resulting multiple taxonomies simultaneously,

but also to track their lineage and discover inter-relationships between them. It

would be necessary to expand the data modeling and querying capability of BODHI

to be able to handle this requirement.

2. Support for Distributed Data Repository. With increasing volume and distri-

bution of biodiversity information, it is inconceivable that a single data repository

would be sufficient for supporting all the requirements of researchers. In order to

cater to this need, distributed data handling capability can be added to the BODHI

system. This support can be easily added since BODHI already provides shipping

of OQL query results in XML format, the standard data interchange format over

the Internet.

3. Persistent Suffix-tree Support. The techniques presented in this thesis for

adding efficient suffix-tree index support in database kernels can be implemented in

other popular database systems such as PostgreSQL [97] and MySQL [85].
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