
Caching Techniques for Dynamic Web Servers

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Suresha

Department of Computer Science and Automation

Indian Institute of Science

Bangalore 560 012 INDIA

June 2007



Publications based on this Thesis

• A Key-Mapping Technique for Proxy-Based Dynamic Web Cache Consis-

tency, Inter Research Institute Student Seminar (IRISS-2002), IISc, Bangalore,

(Awarded second prize), March 2002.

• Proxy-Based Acceleration of Dynamically Generated Content on the World

Wide Web: An Approach and Implementation, Proceedings of ACM SIGMOD

International Conference on Management of Data (SIGMOD), Madison, Wisconsin,

USA, [pgs. 97-108], June 2002.

• A Proxy-Based Approach for Dynamic Content Acceleration on the WWW,

Proceedings of 4th IEEE International Workshop on Advanced Issues of E-Commerce and

Web-based Information Systems (WECWIS), Newport Beach, California, USA,

[pgs. 159-164], June 2002.

• An Integrated Approach for Reducing Dynamic Web Page Construction

Time, Proceedings of 10th National Conference on Communications(NCC), Banga-

lore, India, [pgs. 489-493], January 2004.

• On Reducing Dynamic Web Page Construction Times, Proceedings of 6th Asia

Pacific Web Conference (APWEB), Hangzhou, China, [pgs.722-731], April 2004,

published as Advanced Web Technologies and Applications, Springer, Lecture Notes

in Computer Science (LNCS) 3007, Eds. Jeffrey Xu Yu, Xuemin Lin, Hongjun Lu,

Yanchun Zhang.

• Integrating Code and Fragment Caching to Speedup Dynamic Webpage Con-

struction, Proceedings of 12th International Conference on Management of Data (CO-

MAD), Hyderabad, India, [pgs. 112-121], December 2005.

i



Acknowledgements

I am really thankful to my advisors Prof. Jayant Haritsa and Prof. R.C. Hansdah, who

trained me to do focused, systematic and scientific research. Their dedication towards

research is inspiring. My research experience with them is really unforgettable for the

rest of my life. I don’t have words to thank them for the support they extended for

everything.

My special thanks to all faculties and staffs of CSA and SERC. I also thank all the

DSLlites, CSA students, SERC students and other friends, who have helped me a lot

during my research and stay at IISc, directly and indirectly.

I thank all those who disliked me, because of them I took this task as a challenge

and there by I could get my PhD.

ii



Abstract

Many websites incorporate dynamic web-pages in order to deliver customized contents

to their users. Websites are shifting from a static model to a dynamic model, in order

to deliver their users with dynamic, interactive, and personalized experiences. However,

dynamic content generation comes at a cost – each request requires computation as well

as communication across multiple components within the website and across the Internet.

In fact, dynamic pages are constructed on the fly, “on demand”. Hence dynamic pages,

due to their construction overheads and non-cacheability, result in substantially increased

user response times, server load, and increased bandwidth consumption, as compared

to traditional static pages. Due to continuous growth of Internet traffic and websites

becoming increasingly complex, performance and scalability are becoming major issues

for dynamic websites.

This thesis presents some novel ways of integrating existing solutions to address

performance and scalability issues. Specifically, it aims at achieving reduced bandwidth

consumption from web infrastructure perspective, and reduced page construction times

from user perspective. To address performance and scalability issues, various dynamic

content caching approaches have been proposed in the literature. These approaches can

be broadly classified into two categories: proxy-based caching approaches and server-side

caching approaches (also called as back-end caching approaches).

Proxy-based caching approaches store content at various locations outside the site in-

frastructure and can improve website performance by reducing content generation delays,

firewall processing delays, and bandwidth requirements. However, existing proxy-based
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caching approaches either cache at the page-level or at the fragment-level. The proxy-

based page-level caching does not guarantee that correct and fresh pages are served

and provides very limited reusability. The proxy-based fragment-level caching requires

the use of pre-defined page layouts. To address these issues, several server-side caching

approaches have been proposed. While server-side caching approaches guarantee the cor-

rectness of results and offer the advantages of fine-grained caching, they neither address

firewall delays nor reduce bandwidth requirements.

In this thesis, we consider mechanisms for reducing bandwidth consumption and

dynamic page construction overheads by integrating fragment caching with various tech-

niques such as proxy-based caching of dynamic contents, caching codes and pre-generating

pages. The proposed mechanisms can be classified into two categories, namely proxy-

based and server-side. In the proxy-based mechanisms, we concentrate on reducing the

bandwidth consumption due to dynamic web pages. In the server-side mechanisms,

firstly, we concentrate on reducing the page construction time by resorting to a hybrid

technique of fragment caching and page pre-generation. Secondly, we make use of the

fragment caching to further reduce execution time of the scripts integrating with code

caching and optionally augmented with page pre-generation.

In summary, this thesis presents some novel ways of integrating existing solutions for

serving dynamic web pages with the goal of achieving reduced bandwidth consumption,

from web infrastructure perspective, and reduced page construction times from user

perspective.
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Chapter 1

Introduction

Traditionally, websites started with serving static web pages, by we mean the web pages

served from files, which are constructed manually and readily available. But in recent

times, websites started serving dynamic web pages, by we mean web pages constructed

“on the fly” by running scripts. Now, websites are shifting from a static web page

service model to a dynamic web page service model in order to facilitate delivery of

custom content to users [19]. Increasingly, e-business sites employ dynamic web pages

since they provide a much wider range of interactions than static pages. A website can

generate dynamic web pages at run time using dynamic page generation technologies

to significantly increase its flexibility in customizing page contents. While dynamic web

pages enable much richer interactions than static pages, these benefits are obtained at

the cost of significantly increased user response times and bandwidth consumption, due to

the on-demand page construction and non-cacheability unlike static web pages. Dynamic

web pages also seriously reduce the performance of the web server due to the load incurred

by the page generation process. In fact, it has been recently estimated that server-side

latency accounts for as much as 40 percent of the total page delivery time experienced

by end-users [30]. Delays can be detrimental for websites, as users tend to leave a site

if the response time is too long. A widely cited study [76] has helped to quantify this

phenomenon – it finds that users will abandon requests with exponentially increasing

probability as response time grows: at a response time of 7 seconds, 12% of users will

1
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abandon their requests; at 8 seconds this number grows to 30%, and so on. Moreover,

a recent study indicates that even this thumb-rule is too conservative, i.e., users are

now expecting even faster response times [40]. Hence, performance and scalability are

becoming major issues for dynamic websites.

In the context of dynamic web servers, we present in this thesis some novel ways of

integrating existing solutions to address performance and scalability issues. Specifically,

this thesis aims at achieving reduced bandwidth consumption from web infrastructure

perspective, and reduced page construction times from user perspective.

1.1 Architecture of a Typical Dynamic Content Gen-

eration Process

4. Requests for rich contents Fi
re

w
al

lreturned
3. HTML with embedded URLs Data-

base

Legacy
System

2. HTML page is generated

App. Server

Web Site

Systems

1. User enters URL

Internet

5. Rich content served

Web Server
Cluster Cluster

Back End

Figure 1.1: Typical Dynamic Content Generation Application Architecture

Consider an online book store as a running example. Figure 1.1 illustrates architec-

ture of a website employing dynamic content generation technologies. We use this figure

to describe the process by which a request is served in our running example. When a

user first requests a page, his browser enters the URL

(http://www.booksOnline.com/category.jsp? categoryID=Fiction) for the location of

the script that will generate the requested page (shown as Step 1 in Figure 1.1). The

request is passed from the web server to the application server, which executes the script
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that generates the page (shown as Step 2 in Figure 1.1). Referring back to our running

example, the application server would execute the category.jsp script. This script may

access a database to retrieve the content associated with the Fiction category, create

several objects, and format the content for display. This step often requires significant

work, especially for sites running complex business logic.

The HTML that is output from Step 2 is sent back to the user (shown as Step 3 in

Figure 1.1). The HTML typically contains several embedded references to rich content

objects, such as images. These objects must be retrieved separately (shown as Steps 4

and 5 in Figure 1.1). These objects may be located on the origin server, though this is

often not the case.

1.2 Performance Bottlenecks for Dynamic Web Pages

Having described how a dynamic web page request is served, we now discuss the potential

bottlenecks in this process. These bottlenecks can be classified into two broad areas:

• network latency: i.e., delays on the network between the user and the website.

• server latency: i.e., delays at the website itself, due to on-demand dynamic web

page generation.

Network Latency: In the Internet, users and websites are typically separated by long

distances. Furthermore, content that is delivered over the Internet must go through an

extensive network of transmission and switching devices (e.g., routers, switches). Each

such device is a potential source of delay. The larger the size of the content, the greater

the network delay. Various caching solutions have been proposed to mitigate network

delays, which will be discussed in Section 2.3.

Server Latency: After a user’s request traverses the Internet and arrives at the web-

site, a number of website infrastructure delays can occur, and these delays can be signif-

icant. Delays at the web server can be broadly classified into two categories: (1) session
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processing delays, and (2) dynamic content generation delays. Web server session pro-

cessing delays occur because once a request arrives at the website, it must traverse several

hardware and software layers, a router, a firewall and a switch, before reaching the web

server. Forcing a user’s request through these devices, each of which has a finite through-

put, can expose network performance bottlenecks. With today’s web pages containing

an average of 10-20 objects, the sheer number of trips through the web site’s infras-

tructure creates significant latency [47]. Furthermore, as more and more users try to

access the same content, the redundant load on the firewalls and switches for the same

objects increases dramatically. Caching solutions have been proposed to address also

server delays, which will be discussed in Section 2.4.

Content generation delays occur as a result of the work required to generate a web

page. In the case of static web sites, content generation involved accessing the appro-

priate response file from a file system. Thus, generation delays are negligible in this

case. However, in the case of dynamic websites, the story is completely different. As

mentioned previously, dynamic website requests are processed by an application layer

consisting of application servers and other back-end system components such as DBMSs.

Due to the complexity of modern website application layers, sites are increasingly em-

ploying a layered or n-tier application architecture, which partitions the application into

multiple layers. For instance, the presentation layer is responsible for the display of

information to users and includes formatting and transformation tasks. Presentation

layer tasks are typically handled by dynamic scripts (e.g., ASP, JSP). The business logic

layer is responsible for executing the business logic, and is typically implemented using

component technologies such as Enterprise Java Beans (EJB). The data access layer is

responsible for enabling connectivity to back-end system resources (e.g., DBMSs), and

is typically provided by standard interfaces such as JDBC or ODBC. Such multi-layered

architectures have become widely accepted. For instance, most Java-based web applica-

tions follow the Model View Controller (MVC) [29] design paradigm. In this paradigm,

presentation logic is handled by JSPs, and business logic is controlled by Servlets, which

in turn invoke the appropriate business components (EJBs).
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- Content management

Additional Services

- Commerce
- Personalization

1. JSP invokes Servlet

Presentation

Business Logic

Data Access
- JDBC
- ODBCLegacy

Block(s)

4. DBMS invokes storage application

3. CMS requests data

2. Servlet contacts CMS

Code

Systems
Databases

Back  End Systems

Code
Block(s)

Figure 1.2: Example of Workflow Required to Generate Dynamic Page

To better illustrate how multi-layered architectures serve requests, consider Figure

1.2, which illustrates how part of this request may be served. As this figure shows, the

following steps are required to serve a request:

1. The application server executes the JSP script. The JSP, running in the presenta-

tion layer, invokes a Java Servlet in the business logic layer.

2. The Servlet contacts a content management system (CMS) (e.g., Vignette [67] to

run personalization logic).

3. The CMS requests data from the DBMS. This data may include, for example, the

names, descriptions, and images associated with the Fiction category, as well as

user profile information (assuming that the user has registered with the site). This

request invokes connectivity software (e.g., JDBC), in the data access layer, which

waits for a connection to the DBMS.

4. The DBMS invokes storage applications. These storage applications may, in turn,

make calls to a file system (not shown).

As the above example illustrates, serving a request for a dynamically generated page
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typically involves nested task invocations across multiple application layers. This process

can incur several types of delays, including:

• Computational Delays: This type of delay is the result of executing various

types of logic (e.g., query processing). Note that this delay can occur at multiple

layers.

• Interaction Bottlenecks: This type of delay occurs when a request must wait

for a resource, such as a connection to a DBMS.

• Cross-tier Communication: This type of delay occurs as a result of the network

communication required between application components. For each invocation,

communication between the two components requires network protocol support in

the connectivity software (e.g., JDBC), which traverses a network protocol stack

(e.g., TCP/IP).

• Object Creation and Destruction: This type of delay is common in object-

oriented applications, which must repeatedly create and destroy objects.

• Content Conversion: This type of delay is a result of data transformations (e.g.,

XML-to-HTML) and/or formatting tasks.

Each of these content generation delays contributes to the end-to-end latency in

delivering a web page. As the load on a site increases, the site infrastructure is often

unable to serve requests fast enough. The end result is increased response times for end

users, which leads to performance bottlenecks of dynamic web servers.

In summary, the performance bottlenecks in serving dynamic content are of two main

types: network latency and server latency. Server latency is further composed of session

processing delays and dynamic content generation delays.
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1.3 Optimization Techniques

To address performance and scalability issues of dynamic websites, a variety of opti-

mization techniques have been developed in the recent literature. Here, we consider the

techniques for improving user response time, since response time is more severe from

user perspective. These solutions can be broadly classified into two groups: namely,

caching and predictive techniques. Caching is a widely-used approach to mitigate the

performance degradation due to WWW content distribution and delivery [46]. Here, the

content generated for one user is saved, and used to serve subsequent requests for the

same content. Some significant caching techniques are dynamic content-aware full-page

caching, content acceleration, database caching, fragment caching, active query caching,

and code caching [13, 19, 20, 34, 39, 43]. Predictive techniques are alternative techniques

to caching. Here, the web contents are fetched or generated based on some prediction.

For example, client-side prefetching is a predictive technique [25].

1.3.1 Caching Techniques

Active query caching for database web servers is proposed in [43], which is basically a

collaboration scheme between active web proxies and database web servers. The goal

here is to enable web proxies to share the workload of database web servers as much as

possible at a low overhead. The active proxy answers from the cache, all queries which it

has seen before, as well as for those queries whose answers are contained in the answers of

previously cached queries (for simple selection queries, which are a special case). Active

query caching can improve system scalability as well as reduce wide area network traffic.

In page-level caching, the proxy caches full page outputs of dynamic sites. Page-

level caching has been considered in [9, 34]. Page-level caches can improve website

performance by reducing delays associated with page generation, as well as reduce band-

width requirements. However, there are some major limitations associated with using

page-level caching. First, since page-level caching solutions rely on the request URL

to identify pages in cache, they may serve incorrect pages [21]. Second, there is often



Chapter 1. Introduction 8

very little reusability of full HTML pages. That is, in page-level caching, there will be

unnecessary invalidation because even if one or a few elements on a page become invalid,

then the entire page becomes invalid.

Dynamic page assembly is an approach popularized by Akamai [1]. This approach

entails establishing a template for each dynamically generated page. The template spec-

ifies the content and layout of the page using a set of markup tags. A drawback of

this approach is the requirement that a site follows a specified page design paradigm,

specifically, the use of templates which in turn call separate dynamic scripts for each

dynamically generated fragment, forcing the page layout to be specified in advance.

Fragment caching technique is proposed in [19, 20]. This technique involves caching

fragments (components) of dynamically generated pages. A fragment is a part of a

web page, which is common across one or more web pages. The success of fragment

caching is based on the notion that many fragments of dynamic pages do not change

for extended periods of time and hence can be cached for future requests. A cached

fragment can be invalidated whenever the underlying data source corresponding to the

cached fragment changes. A cached fragment is reusable across all users. Thus cached

fragments are more reusable compared to cached pages. In fragment caching, the page

skeleton is generated for each user’s request and hence serves the correct page. Fragment

caching achieves reductions in dynamic page construction time by making use of cached

fragments, instead of computing them afresh each time.

Code caching is a technique that has been proposed and implemented in the context

of the PHP Accelerator project [39]. Before executing a script, the engine reads, parses,

and compiles the script into code ready for execution. Since, in practice, the scripts

rarely change, this pre-processing is targeted for elimination in [39]. The compiled code

can also be optimized before being put into execution to improve its efficiency and

reduce its footprint. High performance can be achieved by using a shared memory cache

from which the compiled code can be executed directly. The code caching technique

only concentrates on reducing the script execution time. But, it does not eliminate the

execution itself. The attractiveness of code caching is that it can be integrated with any
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other optimization technique.

Among caching techniques described above, fragment caching, which reduces dynamic

page construction time by caching dynamic fragments, is particularly attractive since it

provides the following desirable guarantees [19, 20]: Firstly, it ensures the freshness of

the page contents by maintaining an association between the cached dynamic fragments

and the underlying data sources. Secondly, it ensures the correctness of the page contents

by freshly generating the page skeleton each time the dynamic page is requested.

On the down side, however, fragment caching has some limitations: First, its utility

is predicated on having a significant portion of dynamic fragments to be cacheable –

however, such cacheability may not always be found in practice. Second, even when

most fragments are cacheable, dynamic page construction begins only upon receiving the

request for the page – therefore, the server latency may still turn out to be considerable.

Finally, it does not address the problem of bandwidth requirements.

1.3.2 Predictive Techniques

Page pre-generation is an alternative to caching to mitigate page construction time at

the server. A page can be pre-generated for one or more users based on a prediction

technique. There are several page access prediction models that have been proposed

in the literature [24, 35, 59, 63, 70, 77] based on information gained from mining web

logs. The accuracy of these models has been found to be high enough to justify the

pre-generation of dynamic content [59]. If a pre-generated page is requested by one or

more users, then the page construction time for that pre-generated page is zero from the

user’s perspective. This is what one can expect at the most. But, on the other hand, an

incorrectly predicted page will consume the server resources to pre-generate that page,

which eventually turns out be a waste. This problem becomes severe when the system

is heavily loaded.

Prefetching is another prediction technique, at the client side, that attempts to predict

the object most likely to be accessed next by the user and fetches it into the browser

cache in advance. By prefetching, the latency associated with objects that are currently
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not in the cache, but most likely to be accessed in the near future, can be reduced.

Prefetching complements the web caching. For those web objects, which are correctly

predicted and fetched into the cache, the delay becomes zero, which is the best one can

expect. Prefetching of web objects poses several problems. Firstly, it is difficult to predict

the object which is likely to be accessed next, since web logs are not available to clients.

Secondly, unsuccessful prefetching increases the network bandwidth consumption and

the load on the server.

1.4 Motivation

It is clear in the context of dynamic web servers, performance and scalability are critically

important issues. More over, internet traffic is exponentially increasing [71]. There are

various solutions to address these issues. Many of these solutions are good in their

own context, but have not been analyzed in an integrated fashion. In this thesis, we

have carried out a study of combining a variety of these solutions and analyzed their

performance, to address the above issues. We are impressed by the attractive features

of fragment caching, since it ensures both correctness and freshness of page contents.

Our solutions are based on combining fragment caching with various other techniques.

We are motivated by the fact that the problem has to be tackled at various levels. For

example, in the Internet and Intranet, it is the bandwidth consumption, whereas at the

website, it is dynamic page construction overheads. The performance goals in this thesis

are at two locations, namely network within the site infrastructure and dynamic web

server.

The contributions of this thesis are shown in Figure1.3, in the context of a typical

dynamic web server. Our contributions are marked with rounded rectangles and labeled

as I, II, III, which are described below. The overall thesis structure is as shown in

Figure 1.4 1.

1At dynamic proxy caching, the work is carried out with the actual implementation. Since, fragment

caching and code caching are available only in the form of proprietary softwares, we resorted to simulation

for the results shown in server-side.
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Contribution I: In the network, we try to reduce the network bandwidth consumption

and related delays (like firewall processing delays, switching delays)2. We specifi-

cally address this problem by combining fragment caching with proxy caching. By

taking the dynamic contents to proxy, we are able to achieve reduction in band-

width consumption. We move the bulky fragment responses to the proxy cache and

generate the page layout and any fresh fragment at the origin server. The dynamic

page is completed at the dynamic proxy cache after filling the remaining fragment

responses. The dynamic proxy acts as forward proxy, whereas the fragment cache

remains inside the origin server.

The content kept at dynamic proxy is invalidated by a novel key-mapping tech-

nique. This technique does not carry any invalidation information for any cached

contents at dynamic proxy. Instead, when the content is known to have been

changed at the origin server, the content gets generated when it is next requested

in any page construction at the origin server. A copy of it is sent to dynamic proxy

in a new page request along with a unique number and also cached at the dynamic

proxy for future use. In fact, at the back-end, we maintain just the fragment-name

and a key associated with it in the back-end cache, whereas the actual contents

are kept at the dynamic proxy outside the site infrastructure.

Contribution II: At the server-side, during normal loading, we reduce the dynamic

page construction time by resorting to a hybrid technique of fragment caching

and anticipatory page pre-generation, by utilizing the excess capacity with which

websites are typically provisioned to handle peak loads. During heavy loads, a load-

sensitive feed-back mechanism is used to turn off page pre-generation. We have

shown that over fifty percent page construction time can be reduced compared to

pure fragment caching, during normal loading.

Contribution III: Further, at the server-side, we show that the integration of fragment

caching with code caching reduces page construction times during both normal

2This work was carried out at Chutney Technologies, USA, during a summer internship.
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loading and peak loading. Here, we retain the benefits of fragment caching. At

the time of script execution, we try to avoid the time-consuming repeated script

parsing and interpretation by caching the compiled script code. In a nutshell the

page construction time is reduced at the fragment cache level, if the responses are

readily available in the fragment cache. If not, the compiled script codes are used to

carry out the execution. This reduction in page construction time is achieved at the

time of script execution. The net effect will be further reduced page construction

time.

1.5 Thesis Contributions

The main contributions of this thesis are threefold:

• Reduced bandwidth consumption while retaining the benefits of fragment caching.

• Reduced page construction times during normal loading, by a hybrid technique of

fragment caching and anticipatory page pre-generation, using excess capacity with

which web servers are typically provisioned to handle peak loads.

• Reduced page construction times during both normal loading and peak loading,

by integrating fragment caching and code caching, optionally augmented with an-

ticipatory page pre-generation.

The above contributions are cumulative. We can achieve all the above benefits to-

gether. That is, both reduced bandwidth consumption achieved at proxy-side, and reduced

page construction time achieved at server-side.

1.6 Organization of this Thesis

The reminder of this thesis is organized in the following manner: Chapter 2 gives a

overview of the background material and the literature related to this thesis. Chap-

ter 3 outlines our strategy for dynamic proxy implementation and combined reduced
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response time and network bandwidth. Chapter 4 outlines our new approach to reduce

dynamic page construction time by integrating fragment-caching with anticipatory page

pre-generation, during normal loading, by utilizing the excess capacity with which web-

sites are typically provisioned. Chapter 5 outlines our new approach to reduce dynamic

page construction time by integrating fragment-caching with code-caching, optionally

augmented with page pre-generation. Finally, Chapter 6 concludes the thesis, with av-

enues open for further research, in extending the problem or solution methodologies.



Chapter 2

Related Work

In this chapter, we start with the background necessary for our work followed by a

review of the literature related to the main contributions in this thesis – namely, proxy-

side caching, which we call dynamic proxy caching, and server-side caching, by integrat-

ing fragment-caching with anticipatory page pre-generation, and integrating fragment-

caching with code-caching, optionally augmented with anticipatory page pre-generation.

Before discussing the related work, we give a brief background about the material related

to this thesis and we also distinguish between the two types of web pages, namely static

and dynamic pages, and the way they are served.

2.1 Background

A web-site is a collection of web pages, typically common to a particular domain name on

the World Wide Web (WWW) on the Internet. A web page is a HyperText Markup Lan-

guage (HTML) document accessible generally via HyperText Transfer Protocol (HTTP).

A website provides information about an organization. All publically accessible websites

are seen as constituting a mammoth “World Wide Web” of information. A website can

be used for various purposes like educational use, disseminating information about an

organization, for doing business, for searching information on the WWW, etc.

A computer system that delivers web pages is called a web server. A web server

15
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serves web pages in response to requests from web browsers. Every web server has an

Internet Protocol (IP) address and possibly a domain name. A computer system can be

made as a web server by installing web server software and connecting the machine to

the Internet. A web server processes HTTP requests by responding with HTML pages.

HTTP requests are generated by clients through their browsers.

A static web page contains content/information that does not change frequently. And

it is displayed the same way each time the page is requested by any user. A static web

page is designed in HTML manually. Static web pages can contain HTML tags and text,

as well as other elements suitable for the page, such as images and animation. A website

which serves static web pages is called a static website. Static websites deliver the same

page contents to all visitors to the website. In case any changes are needed to static

web pages, someone must edit each page whenever a change is required. Furthermore, if

the content that needs changes appears on multiple web pages, each of them will have

to be edited individually. As a result, websites that use static content are expensive to

maintain. Static web pages are also inflexible. For example, we cannot personalize the

content on a static web page.

A dynamic web page contains content/information that is generated when the user

requests the page. This content is generated upon receiving the request by executing

a script (program) file that contains the instructions to build the page based on the

current state of the website. This content is extracted from databases or other data

sources, allowing the web page to present the most current information. Common ex-

amples of simple dynamic pages are those that display the current date and time, or a

visitor counter. A website which serves dynamic web pages is called a dynamic website.

Dynamic websites may present differing information to different visitors to the same page

in the website. In a dynamic web page, the display logic is maintained separately from

the content and the content is stored in a database repository or obtained from other

data sources instead of a HTML file. Each dynamic web page consists of a template that

provides the look and feel plus code that assembles the page by retrieving the appropriate

content. Both the template and content can be updated independently. This results in
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lower maintenance costs and increased flexibility.

A static website comprises a set of related HTML pages (HTML files) hosted on a

computer running a web server. A page request is generated when a visitor clicks a link

on a web page, selects a bookmark in a browser, or enters a URL in a browser’s address

text box. When the web server receives a request for a static page, the server reads the

request, finds the page, and sends it to the requesting browser. The final content of a

static web page is determined by the page designer and doesn’t change when the page

is requested. Every line of the page’s HTML code is written by the designer before the

page is placed on the server.

When a web server receives a request for a static web page, the server sends the page

directly to the requesting browser. When the web server receives a request for a dynamic

page, however, it handles it differently: it maps the request to the corresponding script

and passes it to a server called application server responsible for generating the page.

The application server reads the code on the script, and constructs the page according

to the instructions in the code. The result is a static page that the application server

passes back to the web server, which then sends the page to the requesting browser. All

that a requesting browser gets when the response for the page’s request arrives is a pure

HTML page.

Static pages are normally ready even before the request for it appears at the website.

Unlike static web pages, dynamic web pages are constructed on the fly after receiving

a request for the page and the page content is generated on-demand. A dynamic web

page has two components, the layout and the content. The layout refers to how a page

looks like, whereas the content refers to what a page contains. For a highly personalized

dynamic web page, both the layout and content can be different. Two different requests

for the same dynamic web page may turn out to provide different pages depending on

the user and the state of the website. We say that a dynamic web page is correct if it is

same as intended for a particular user request. We assume that a dynamic web page is

fresh if all the components in it are fresh at the time of page assembly.
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2.1.1 Serving Static Web Pages

For serving static web pages, there are web content caches often placed between end-

users and origin servers as a means to reduce server load, network usage, and ultimately,

user-perceived latency. Cached static contents typically have associated Time-To-Live

(TTL) value, after which the content has to be validated with a remote server (origin or

another cache), before they can be served to the end-user. To serve static web contents,

there are a variety of well established solutions that are implemented practically and

effectively at various levels in the Internet [7, 10, 16, 17, 72]. In contrast, the solutions

to address the dynamic contents are still effectively in a development stage.

2.1.2 Serving Dynamic Web Pages

Unlike static web pages, the content and the layout of dynamic web pages are not ready

before the request arrives at the origin server and the dynamic pages are constructed

on the fly after receiving a request for the page and the page content is generated on-

demand. To support dynamic content generation, a range of technologies are available.

A dynamic website maintains a program corresponding to a dynamic web page, called a

dynamic script (a program). A dynamic website may have a set of application servers.

These application servers run dynamic scripts to generate dynamic web pages. A user

request for a dynamic web page is mapped to a dynamic script at the website. The

web server selects an application server and instructs it to execute the corresponding

script and to produce the dynamic web page. The selected application server carries

out script execution with necessary logic to generate the requested page, which involves

contacting various resources to retrieve, process, and format the requested content into a

user deliverable dynamic web page (which is in fact a HTML page). It is clear from this

discussion that serving dynamic web pages involves a lot of resources and computation,

leading to performance and scalability issues. These problems will still remain even with

increased processor speed, since the Internet traffic for dynamic contents is also growing.
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2.2 Dynamic Content Generation Process

Over the past few years, websites have transitioned from a static content model to a

dynamic content model. Dynamic content generation allows web sites to offer a wider

variety of services and contents. A broad range of technologies are available to sup-

port such dynamic content generation. For instance, application servers (e.g., BEA’s

WebLogic [6] and IBM’s Web- Sphere [31]) are commonly used to handle page genera-

tion tasks and manage connections to back-end services, such as DBMSs and Content

Management Systems (CMSs). Application servers run dynamic scripts (programs) to

generate web pages. These scripts can be written in a number of languages including

Sun’s Java Servlets and Java Server Pages (JSP) [64], the Active Server Pages (ASP)

family from Microsoft [44], Hypertext Preprocessor (PHP) [53], and Perl [52].

At a high level, dynamic scripting works as follows: A user request maps to an

invocation of a script. This script executes the necessary logic to generate the requested

page, which involves contacting various resources (e.g., database systems) to retrieve,

process, and format the requested content into a user deliverable HTML page.

2.2.1 Dynamic Layouts

Consider an online book store that caters to both regular and casual visitors (we call

them as registered users and non-registered users respectively). Assume a registered user

is on the entry page of the site, which presents a list of category links that the user can

choose to navigate. Suppose the user clicks on the Fiction category, which results in the

following request arriving at the site’s web server:

http://www.booksOnline.com/category.jsp?categoryID=Fiction. An application server at

the site will execute the program category.jsp, which takes the categoryID input param-

eter to retrieve the content associated with the Fiction category. Suppose this request

produces a page having the layout shown in Figure 2.1(a). This page contains a number

of fragments. The Banner Ad fragment contains an advertisement that is retrieved
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from an ad server based on the user’s referring URL and the current time. The Per-

sonal Greeting fragment consists of a greeting for the user including the user’s name

and the current time. The Product Category Detail fragment displays the names,

descriptions, and images associated with the products in the Fiction category. This in-

formation is obtained by querying a content database. The Navigation Bar fragment

displays the navigation selections available. Finally, the Recommended Products

fragment contains a list of recommended products which are retrieved from a personal-

ization server based on the current category and user profile information.

Clearly, some of the fragments of the page shown in Figure 2.1(a) are based on

user profile information, which would only be present for registered users. As mentioned

earlier, the site also caters to non-registered users. Suppose that a non-registered user,

from the home page, clicks on the Fiction category link, which results in exactly the

same URL request arriving at the site server

(i.e., http://www.booksOnline.com/category.jsp?categoryID=Fiction). However, for this

user, the site provides a different page as shown in Figure 2.1(b). There are two key

differences between the two pages shown in Figures 2.1(a) and 2.1(b). First, some of the

contents are different – the page for non-registered users contains a Featured Prod-

ucts fragment rather than the Personal Greeting and Recommended Products

fragments. Second, the page layouts are different – the Navigation Bar appears in a

different place on the non-registered user’s page and the Product Category Detail is

displayed in two-column format rather than single-column.

In general, a HTML page consists of two distinct components: content and layout.

Content refers to the actual information displayed and layout refers to a set of markup

tags that define the presentation (e.g., where the content appears on the page). Loosely

speaking, with respect to Figure 2.1(a), the different fragments (e.g., the Banner Ad)

represent content, whereas the layout determines how the fragments are presented on

the user viewable page. Examples of layout includes any HTML tags (e.g., <TABLE>,

<TITLE>). Figure 2.2(a) shows a schematic of the layout for the registered user’s page.

In this figure, each < Li > represents the layout for a particular section of the page.
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Each < Li > would include a string of markup tags, such as < TABLEWIDTH =′′

100%′′ >< TR >< TD > .... The remaining elements represent the content, e.g.,

< BA > denotes the Banner Ad. Figure 2.2(b) shows the layout for the non-registered

user’s page for comparison purposes. The different fragments on a page represent content,

whereas the layout determines how the fragments are presented on the user viewable page.

Here, the final presentation of the page is partially determined by the order in which

the markup tags appear in the page, as well as the actual markup tags themselves (e.g.,

< HR >, which adds a horizontal rule).

3
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4

9 1110

652(a) 1

... <L > <BA> <L > <NB> <L > <FP> <L > <PC> <L  > ...

...<L > <BA> <L > <NB> <L > <PG> <L > <PC> <L > <RP> <L > ....

(b)

Figure 2.2: Comparison of Dynamic Page Layouts

The foregoing discussion highlights two important characteristics of dynamically gen-

erated content. First, not only is the content of many sites dynamic, but also the page

layout. In other words, the precise organization of a page is often determined at run-

time. Second, and most important, the same request URL can produce different content

and/or different layouts. The registered and non-registered users submit the exact same

URL to the site, yet they may receive very different pages. This fact is very important,

and one of the major impediments to caching dynamic pages in a proxy cache.

Another important issue one can think of is the layout caching in addition to content

caching. Layouts are normally specific user request and inputs. This may lead to huge

number of layouts to be cached, with limited reusability. Hence, layout caching is not

attractive.
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2.3 Proxy-Based Caching Solutions

Two broad approaches exist in using proxies to cache dynamic pages, namely page-level

caching and dynamic page assembly. In these approaches the dynamic contents are

cached outside the site’s infrastructure.

In page-level caching approach [9, 11], the proxy caches full page outputs of dynamic

sites. Some solutions are deployed in forward proxy mode, in distributed caching archi-

tecture located at numerous points around the Internet [28, 54]. Page-level caching can

improve website performance by reducing delays associated with page generation, as well

as reducing bandwidth consumption. However, there are some major limitations asso-

ciated with using page-level caching. Since, the page level caching solutions rely on the

request URL to identify pages in the cache, they may serve incorrect pages. When pages

are generated dynamically, different invocations of a given script are not guaranteed to

produce the same page, even with the same input parameters. For example, consider a

website that serves both registered (regular) and non-registered (casual) users. Let us

say Bob is a registered user and Alice is a non-registered user. When Bob makes the

request to the site, the site will put relevant personalization contents to the page served

to Bob. Whereas there may not be any personalization for Alice. For Bob, the page

served may include a “Hello Bob” greeting. Suppose this page is cached, then suppose a

subsequent user, say Alice, requests the same page (using the same request URL). Now

Alice, will receive a greeting “Hello Bob”, which she is not supposed to receive, since

she is not a registered user and she is not Bob. But, if the site is using a proxy cache,

Alice will be served the page that was just served to Bob, since this page matches the

request URL. Thus, as this example illustrates, proxy-based caches may serve incorrect

pages. In fact, this problem has prevented the use of proxies in caching dynamic pages.

Another problem with page level caching is the unnecessary invalidation, even if one or

a few elements on a page become invalid, then the entire page becomes invalid. This

means that there is often very little reusability of full HTML pages.

Dynamic page assembly is an approach popularized by Akamai [1] as part of the

Edge Side Includes (ESI) initiative [27]. This approach entails establishing a template
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for each dynamically generated page. The template specifies the content and layout of

the page using a set of markup tags. A drawback of this approach is the requirement that

a site follows a specified page design paradigm, specifically, the use of templates which

in turn call separate dynamic scripts for each dynamically generated fragment, forcing

that page layout to be known in advance. Thus, sites supporting dynamic layouts will

not be able to take the advantage of dynamic page assembly. Another drawback of the

dynamic page assembly approach is that it cannot be used in the context of pages with

semantically interdependent fragments. The work in [42] can be considered as a dynamic

page assembly approach. This work proposes a proxy cache that stores query templates,

along with query results, which are used to manage the cache. This approach can only

mitigate some delays associated with query processing, but it does not address the other

delays associated with dynamic web page generation.

The proxy caching approaches are able to achieve significant bandwidth savings.

However, their applicability in caching dynamic pages is rather limited and their primary

use is in caching fixed layout content.

Web caching is an effective way to alleviate server bottlenecks, network traffic and

the delay in fetching web objects. Web caching only enables reduction of the latency of

accessing web objects that are in the cache, which are already accessed and retained for

future use. An alternative technique to web caching is prefetching, where by predicting

the object which is most likely to be accessed by the user and fetching it into the cache.

By prefetching, the latency associated with objects that are not in the cache, but most

likely to be accessed in the near future, can be reduced. Prefetching complements the

web caching technique. It predicts the web objects most likely to be accessed by the user

and fetches them into cache. For those web objects, which are correctly predicted and

fetched into the cache, the delay becomes zero, which is the best that could be hoped

for from the user perspective.

Prefetching can be applied in three ways with respect to WWW [69]. Namely, between

clients and web servers, between proxies and web servers, and between browser clients

and proxies. The prefetching of rich contents is the simplest prefetching scheme. The
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benefits of prefetching them is imperative, since they are mostly likely to be requested.

Other than this, prefetching can be done when the users/clients surf the websites with

a pattern and not randomly. Such schemes typically use Markov models for predicting

the next object that is accessed.

Prefetching of web objects poses some serious problems. Firstly, the prefetching

increases the network bandwidth consumption, due to prefetching of objects which are

not used. Secondly, it increases the server’s load, by sending requests for all predicted

objects that may not be subsequently used at all. Also most pages on any website are

accessed only once (one-time accesses) and a lot of users access only one page from a

particular website before moving on to a new website. Such behaviour increases the

difficulty of predicting and prefetching the object that is likely to be accessed next.

The ever changing nature of the web, in particular the website, also tends to affect the

performance of prefetching. In particular, users surfing pattern changes as the popularity

of different web objects change over a period of time. For example, in a news web-server,

such as www.indianexpress.com, the most recent and hot news items, and the related web

objects, have higher popularity. However, the popularity of a specific object may fade

with time. Also, as newer pages are added to the web, newer surfing patterns emerge.

It is important to take these aspects of the web and individual web sites into account

while designing a prefetching algorithm.

2.4 Server-Side Caching Solutions

The server-side caching solutions are based on the idea of caching dynamic content within

the site architecture at various levels, to accelerate dynamically generated content. The

server-side caching approaches can help to reduce the delays associated with dynamic

web page generation. These solutions do guarantee the freshness of the output. By

caching at the finer granularity, these solutions also achieve greater reuse of content and

allow fine-grained invalidation. However, they do not address network-related problems

due to dynamic web pages.
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Some solutions take the approach of caching at the page-level of dynamically gener-

ated pages (e.g., [34, 62, 75]). The page-level caches can improve website performance

by reducing delays associated with page generation. However, there are some major

limitations associated with using page-level caching as discussed in Section 2.3.

Various types of database caching have been suggested, including caching the results

of database queries [13, 42], caching WebViews [37], caching database tables [4] and

caching database tables in main memory [50]. These solutions, of course, can address the

delays associated with databases, but not other delays in dynamic web page generation

and distribution.

In caching WebViews [37], an adaptive algorithm for the Online View Selection prob-

lem is presented. This helps at run time to determine which views should be materialized

(cache and refresh immediately on updates) and which ones should just be cached and

re-used as necessary. This solution concentrates on database updates and freshness of

dynamic contents, but does not address the problem in general with dynamic web pages.

The work in [73] proposes a caching system that caches content at various levels. This

work introduces the Weave management system developed at INRIA. Weave concentrates

more on the declarative specification of websites and offers a number of tools for the

easy implementation, deployment and monitoring of the specified site. Weave features a

customizable cache system that implements the data materialization strategy according

to the website’s specifications: it can cache database data, XML fragments and HTML

files. A limitation of this approach is that it requires the site to be designed using a

particular declarative website specification language.

Another approach is presentation layer caching, which caches HTML fragments.

Many application servers provide this type of caching capability (e.g., WebLogic from

BEA Systems [6] and WebSphere from IBM [31, 41]), which can mitigate delays due

to presentation layer tasks. But, it does not address other delays in dynamic web page

construction.

An efficient technique to compose web pages from fragments for web based publi-

cations is given in [12]. Complex web pages are constructed from simpler fragments.
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Fragment-based web publication allows parts of dynamic web pages to be cached. This

work also presents algorithms for detecting and updating all affected web pages after

one or more fragments change. It presents an automatic feature for publishing system

for automatically and consistently publishing dynamic contents. It has been deployed at

several popular websites, including the 2000 Sydney Olympics Games website [49]. This

technique is a good solution for publishing dynamic content. The cached web page has to

be regenerated even if one or more fragment become invalid and hence this solution has

limited reusability. Since, cached dynamic web pages are identified by requesting URL,

this technique may serve incorrect pages, if implemented in case of highly personalized

websites. Since two requests for the same URL may turn out to provide two different

dynamic web pages. Hence, this technique is useful for dynamic web sites with fixed

page layouts.

Fragment caching technique is proposed in [19, 20]. This technique involves caching

fragments of dynamically generated pages. A fragment is a part of a web page, which

is common across one or more web pages. The success of fragment caching is based on

the notion that many fragments of dynamic pages do not change for extended periods of

time and hence can be cached for future requests. A cached fragment can be invalidated

whenever the underlying data source corresponding to the cached fragment changes. A

cached fragment is reusable across all users. In fragment caching, the page skeleton is

generated for each user’s request and hence serves the correct page. Fragment caching

achieves reduction in dynamic page construction time by making use of cached fragments,

instead of computing them afresh each time. On the down side, however, fragment

caching has some limitations as discussed in Section 1.3.1.

Code caching is a recent technique that has been proposed and implemented in the

context of the PHP Accelerator project [39]. Before executing a script, the engine reads,

parses, and compiles the script into code ready for execution. Since, in practice, the

scripts rarely change, this pre-processing is targeted for elimination in [39].

In PHPA, it is assumed that the compiled code uses instructions from a virtual
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instruction set that is platform independent and once compiled, the code is executed by

a virtual machine that interprets the instructions. In our context, it is also possible to

conceive that since dynamic websites are usually meant for a specific task, the script

can be directly compiled to the native machine, dispensing with platform independence.

This compiled code can also be optimized before being put into execution to improve

its efficiency and reduce its footprint. We assume that the code caching technique can

be extended to the level of individual code blocks, where, instead of caching the entire

compiled code of a script, only the compiled code corresponding to an executable code

block is cached. High performance can be achieved by using a shared memory cache

from which the compiled code can be executed directly. The code caching technique

only concentrates on reducing the script execution time. But, it does not eliminate the

execution itself.

Page pre-generation is a server-side alternative to dynamic web caching. Here, dy-

namic pages are generated based on some prediction prior to the request for the page.

There are several page access prediction models that have been proposed in the litera-

ture [24, 35, 59, 63, 70, 77], based on information gained from mining web logs. These

models can be classified into two categories: point-based and path-based. The point-based

models predict the user’s next request solely based on the current request being served

for the user. On the other hand, the path-based prediction models are built on entire

request paths followed by users. The path-based predictions use a path profile, which is

a set of pairs, each of which contains a path and the number of times that path occurs

over the period of the profile. The profiles can be generated from standard HTTP server

logs and the accuracy of these models has been found to be high enough to justify the

pre-generation of dynamic content [59] – in the rest of this thesis, we assume the use of

such a path prediction model.

The server-side caching approaches briefly described above can help to reduce the

delays associated with content generation. Since they reside at the origin server, these
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solutions do guarantee the freshness of the content. Specifically, fragment caching so-

lution also ensures correctness of the dynamic web pages, since the page skeleton is

generated for each user request, after receiving the page request. However, they deliver

all contents from the dynamic website and do not address network-related delays. These

solutions still have considerable page construction times, which can perhaps be reduced

further by integrating with various other solutions. We have carried out a variety of such

integrations in this thesis.

2.4.1 Fragment Caching

Now, we explain in detail the fragment caching technique proposed in [19, 20]. This

technique involves caching fragments or components of dynamically generated web pages.

To understand fragments in a dynamically generated web page, consider a dynamically

generated page in an application that provides TV listings. Such a page might have the

following, easily reusable fragments: site navigation, local TV listings, editorial content,

and external content. While the local TV listings fragment probably can be reused for

all users in the same geographical location, the site navigation, editorial content, and

external content will likely be reusable across all users. Thus, these fragments can be

cached to serve future requests.

Based on this notion, a dynamic content accelerator (DCA) has been built [19, 20].

DCA is a server-side caching engine that caches such dynamic web page fragments to

reduce page-generation processing delays. A set of prediction and observation-based

techniques are used for cache replacement and invalidation. The substantially reduced

processing load on the web application server lets it handle significantly higher user

loads. The dynamic content accelerator (DCA) has two components: fragment-level

caching and a set of intelligent cache management strategies based on prediction-based

cache replacement and observation-based cache consistency.
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Caching Dynamic Page Fragments

To address page-level caching issues, the DCA employs a fragment-level caching approach

that focuses on reusing HTML fragments of dynamic web pages. To show how fragment-

level caching works, let us first examine dynamic scripts in more detail. A dynamic

script typically consists of a number of code blocks, each performing some work required

to generate the page such as retrieving or formatting content and produces a HTML

fragment as output. A write to out statement, which follows each code block, places the

resulting HTML fragment in a buffer. When a dynamic script runs, each code block

executes and the resulting HTML fragment goes into the buffer. Once all code blocks

Write to Out

Write to Out

Dynamic Script

Write to Out

Write to Out

Write to Out

Banner Ad

Personal
Greetings

Product Category

Recommended
Prodcut

Detail

N
a
v

ig
a
ti

o
n

 B
a
r

Dynamically Generated Page

Code Block  A

Code Block  B

Code Block C

Code Block D

Code Block  E

Figure 2.3: A Template of Dynamic Script to Generate a Dynamic Web Page

have been executed, the entire HTML page is transmitted as a stream to the user. The

resulting page generated by the scripting process thus consists of a set of fragments.

Figure 2.3 gives a high-level depiction of the dynamic scripting process. A particular

code block in the dynamic script generates a corresponding component (for example,
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code block A generates the “Banner Ad” component, code block B generates the “site

navigation” component, and so on). When the script executes, each code block writes

the HTML corresponding to its component into an output buffer, which then goes to the

user for viewing.
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</dpc>

<dpc:pcKey+catID:60>
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<dpc:nbKey:3600>
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Figure 2.4: A Template of Dynamic Script with Tagged Code Blocks for
Caching

Given the significant potential for reusing the page’s components, each cacheable

component is identified, which the application developer accomplishes by marking or

tagging the corresponding code blocks in the script. For instance, Figure 2.4 depicts

the tagging of a code block. Placing tags around a code block indicates that its output

is cacheable. Thus, when the script executes, the tags instruct the application server

to first check the DCA cache before executing the code block. If the server finds the

requested fragment (corresponding to a tagged component) in the fragment cache and

finds that it is fresh, it returns the fragment directly from the cache, bypassing the code

block logic. If the server does not find the requested fragment in cache or finds that it

is stale, the code block executes and the server generates the requested fragment and

subsequently places it in the cache for future use, if it is tagged for caching.

Clearly, fragment caching solution requires identifying cacheable components. The
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site designer ultimately has to make this decision. As part of the initial identification

process, the designer has to assign each cacheable component a cache key. This key,

along with the actual fragment content, resides in the cache. Other meta-data can also

reside with each cache entry, such as the Time-To-Live (TTL) value. The fragment cache

is implemented as a hash table, thus providing constant lookup time. Figure 2.5 shows

a simplified depiction of an end-to-end website architecture with the DCA cache.

Internet

Client

Client

Client

Content

Web Site

Web/App. Server

and fragment cache
Fragment Cache Manager 

Figure 2.5: The Existing Fragment Caching

Prediction-Based Cache Replacement

Key to the DCA is a predictive cache management policy called Least-Likely-to-be-Used

(LLU). When choosing a replacement victim, the policy considers not only how recently

a cached item has been referenced, but also whether any user is likely to need it in the

near future.

LLU cache replacement policy

The LLU cache replacement policy requires three types of information from a site: the

site graph, current behavior of users on the site, and aggregated past behavior of users

on the site. At startup, the cache is empty. As fragment sets are accessed, corresponding

cacheable fragments are stored in the cache. When the total size of the cached fragments

reaches the cache limit, cache replacement starts. For each new fragment set stored in

the cache, the DCA cache manager must evict a (different) fragment set from the cache.
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The fragment set chosen for replacement is the one with the lowest probability of access

– the fragment set that is least likely to be used. If there are multiple fragment sets with

this same probability value, the DCA cache manager chooses the fragment set with the

oldest access time stamp.

Observation-Based Cache Invalidation

The DCA provides a number of intelligent cache invalidation strategies that keep cached

content fresh as the underlying source data changes. Developers can combine these

strategies as necessary to best suit a particular site. Keeping cached content fresh requires

intelligent decisions regarding when to invalidate items and which items to invalidate.

Existing solutions generally rely on three techniques to determine when to invalidate

cache elements:

• Time-based: Each cache element is assigned a fixed TTL.

• Event-based: An update to some data source (such as a database system) inval-

idates an item in the cache. An invalidation message goes from the data source to

the cache.

• On-demand: The site administrator manually invalidates either the entire cache

or specific items.

The DCA has adapted these techniques to work in the context of DCA’s component-

level cache. In addition, the DCA has used a new invalidation scheme called observation-

based invalidation. This technique is similar to event-based invalidation, except that the

updates can be observed within the scripts. This is typically the case for sites where

updates are made via the web application (such as auction or online trading sites). This

approach is non-intrusive, requiring no communication between the data sources and the

cache. Rather, invalidation messages go from the web application server to the cache.

Deciding which items to invalidate is another important decision. Sites might have

data dependencies or other criteria that determine which items in the cache should be
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invalidated. For instance, consider an online retail site that displays product information

such as description and price. The site might have the following dependency: If price

changes, then product information changes. System designers can specify such depen-

dencies and use them to invalidate the appropriate items in the cache.

2.5 Comparison of Optimization Techniques

Here, we give a comparison of various optimization techniques for dynamic web contents.

The advantages and disadvantages are summarized in Table 2.1.

2.6 Our Research

As mentioned above, research efforts on performance and scalability of dynamic web

contents have gained momentum in the last few years. In our research work, we have

concentrated on integrating some of these solution techniques to address the scalabil-

ity and performance issues. We specifically integrate fragment caching technique with

others, to address both network consumption and dynamic web page generation time

problems.

2.6.1 Delays addressed by our techniques

Our proposed dynamic proxy caching technique addresses network bandwidth consump-

tion and related delays (like firewall processing delays, switching delays). We achieve

this by combining fragment caching with proxy caching. We move the bulky fragment

responses to the proxy cache and generate the page layout and any fresh fragment at the

origin server. By taking the dynamic contents to proxy, we are able to achieve reduction

in bandwidth consumption. The dynamic page is completed at the dynamic proxy cache

after filling the remaining fragment responses.

In our hybrid technique of fragment caching and anticipatory page pre-generation, we

address server-side latency. In this technique, during normal loading, we pre-generate a
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most expected page for the current user, so that for subsequent user request pre-generated

page can be served in case of correct prediction. In this case, the page construction time

is zero, which is the best that could be hoped for from the user perspective.

The proposed integration of fragment caching with code caching reduces page con-

struction times during both normal loading and peak loading. In this technique, while

assembling a dynamic page from fragment responses (either taking fragment response

from fragment cache or freshly generating by executing fragment script), the code caching

is used to cache the compiled codes. So that, for subsequent code execution, the time con-

suming code interpretation part can be avoided by executing the compiled code directly

from code cache. From a broad perspective, by integrated caching we are achieving the

long-term benefits whenever the fragments or their associated compiled codes are reused

in course of time.

Our thesis contributions are cumulative. We can achieve all the above benefits to-

gether. That is, both reduced bandwidth consumption achieved at proxy-side, and reduced

page construction time achieved at server-side. In the next three chapters we present our

research work.
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Table 2.1: Comparison of Optimization Techniques

Techniques Advantages Disadvantages

Proxy-Based Caching • Reduce response time

• Reduce bandwidth require-

ments

• May serve stale content
• May serve incorrect
pages.

i) Page-level caching • Reduce response time
• Reduce bandwidth re-
quirements

• May serve stale content
• May serve incorrect pages
• Have limited reusability

ii) Dynamic page assembly • Reduce response time
• Reduce bandwidth re-
quirements

• A site requires a spe-
cific page design paradigm
• Not applicable to sites
supporting dynamic layouts

Prefetching • Reduce response time • Consume bandwidth
• Increase spurious load on
the server

Server-Side Caching • Guarantee freshness • Do not address band-
width requirements

i) Page-level caching • Reduce response time • May serve incorrect pages
• Have limited reusability

ii) Fragment caching • Reduce response time
• Serve correct pages
• Achiev greater reusability

• Depend upon cacheabil-
ity
• Do not address band-
width requirements
• Page construction starts
only after receiving page re-
quest

iii) Database caching • Address delays associated
with databases

• Do not address other de-
lays in dynamic web page
generation and distribution

iv) Weave management
system

• Cache at various levels • Site to be designed us-
ing a particular declarative
website specification lan-
guage

v) Fragment based web
publications

• Automatically and con-
sistently publishes dynamic
contents

• Limited reusability
• May serve incorrect pages

vi) Code Caching • Reduce script execution
time

• Do not eliminate execu-
tion itself

Page pre-generation • Reduce response time • Increase load on the
server, if not controlled
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Dynamic Proxy Caching

In this chapter, we present an approach and an implementation of a Dynamic Proxy

Caching (DPC)1 technique which combines the benefits of both proxy-based caching

and server-side caching approaches, yet does not suffer from their individual limitations.

Our dynamic proxy caching technique allows granular, proxy-based caching, where both

the content and layout can be dynamic. Specifically, we describe an architecture for

such a system, as well as the data structures and algorithms needed to make it work.

We show the effectiveness of our system by studying its performance analytically and

experimentally. A performance analysis of our approach indicates that it is capable of

providing significant reductions in bandwidth consumption. The work presented in this

chapter refers to proxy-side caching, shown as Dynamic Proxy Caching in Figure 1.4,

in Section 1.4, with a coupling between contents stored at proxy-cache and data origin,

without extra communication cost to refresh cache contents. Our experimental results

validate our analytical findings.

Organization

The remainder of this chapter is organized as follows: In Section 3.1, we provide a detailed

description of the architecture of proposed dynamic proxy. In Section 3.2, the analytical

results are shown. The experimental results are presented in Section 3.3. A case study

1This work was carried out during a summer internship at Chutney Technologies, USA.

37
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is discussed in Section 3.4. Extensions to this work are discussed in Section 3.5. Finally,

we conclude in Section 3.6.

3.1 Dynamic Proxy-Based Caching Approach

In this section, we describe our proposed approach for granular proxy-based caching of

dynamic content. We first discuss the intuition behind our approach, followed by the

architecture and technical details.

3.1.1 Intuition

Our objective is to deliver dynamic pages from proxy caches. Recall that dynamic

pages are “dynamic” across two dimensions: they possess dynamic content and dynamic

layout. Any dynamic content caching system must account for both - in fact, the primary

weakness of existing proxy caching schemes arises from their inability to map a URL to

the appropriate content and layout. To mitigate this weakness, our essential intuition

may be summarized as follows: we will cache dynamic content fragments in the proxy

caches, but the layout information would be determined, on-demand, from the source

site infrastructure. In other words, we propose to respond to a dynamic page request,

Ri, as follows. We will route Ri through a dynamic proxy, Di, to the site infrastructure.

Upon reaching the site infrastructure, Ri will cause the appropriate dynamic script to

run. A back end module will observe the running of this script and determine the layout

of the page to be generated (the actual process is much more complicated, and will be

described in greater detail subsequently in this section). This layout, (much like what is

depicted in Figure 2.2), which will be much smaller than the actual page output, will be

routed to the proxy Di. The proxy will fill in the content from its cache and route it to

the requester.

Figure 3.1 illustrates this process and helps to clarify the intuition. Consider again

a request for the fiction category page, as described in Section 2.2. The request (Step

1 in Figure 3.1) passes through the dynamic proxy cache, which routes it to the origin
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Figure 3.1: Overview of Dynamic Proxy Caching System

site (Step 2). At the origin site, the application server executes the category.jsp script to

serve this request (Step 3). A monitor at the back-end observes the application processing

and generates the page layout accordingly (Step 4). This layout will contain “holes” to

indicate where the cached fragments should be inserted. In Figure 3.1, these “holes” are

shown as the empty boxes in the layout. This layout is sent to the dynamic proxy cache

(Step 5), which fills the “holes” with the appropriate fragments from its cache (Step 6).

The resulting page is then delivered to the user (Step 7).

This high-level example raises many questions about the details of our dynamic proxy

caching system. For instance, how does the monitor at the back-end determine the page

layout? How does the monitor know which fragments are in the dynamic proxy cache?

How is the dynamic proxy cache managed? In the remainder of this section, we answer

these types of questions by explaining the details of this system.

3.1.2 System Architecture

Figure 3.2 illustrates the architecture of our system. Note that this architecture is similar

to the one shown in Figure 1.1, with two additional modules (the shaded modules): the

Dynamic Proxy Cache (the shaded squares) and the Back-End Monitor (the shaded
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circles). The Dynamic Proxy Cache (DPC) stores dynamic fragments outside the site

infrastructure and assembles these fragments in response to user requests. Note that the

DPC can also cache other types of content as well (e.g., rich content, static fragments).

However, in this chapter, we focus on the novel aspects of our approach – the ability to

handle dynamic content and dynamic layouts. The ability to support dynamic layouts

is enabled by the Back-End Monitor (BEM). The BEM resides at the back-end and

generates the layout for each request. This layout is passed back to the DPC, which

assembles the page that is returned to the requesting user. As we will soon show, this

approach enables significant reductions in bandwidth requirements, since only the page

layouts and perhaps some contents, are transmitted from the back-end to the DPC.

As Figure 3.2 shows, the DPC can reside either (a) at the origin site (in a reverse

proxy configuration as in the case for the DPC labeled D1), or (b) at the network edge

(in a forward proxy configuration, as in the case for DPCs D2 and D3). In the former

case, the primary benefit is the reduction in the number of bytes transferred through the

site infrastructure for each request. In the latter case, the forward proxy configuration

(similar to that of present-day Content Delivery Networking (CDN)), the benefits are

even greater - the reduction in bytes transferred for each request is realized not only
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within the site infrastructure, but also across the Internet. The basic underlying technical

issues are the same for both the reverse proxy as well as the forward proxy configurations.

The main difference between the two is that a forward proxy configuration typically

would mandate a distributed cache architecture, whereas a reverse proxy configuration

is a logically single unit. Thus, two issues arise in the forward proxy case that are not

present in the reverse proxy case: (1) request routing, and (2) cache coherency.

Request routing refers to the problem of determining which dynamic proxy should

service an incoming request. This problem has been studied extensively in the context

of CDNs, which focus primarily on routing requests for static files (e.g., image files),

where a file is uniquely identified by its URL. A key difference between request routing

for CDNs and for our system is the nature of the content. Our system must address the

issue of routing requests for dynamic fragments. Clearly, routing that is based on URL

is not applicable in our case since page fragments cannot be determined from the URL.

Given that multiple copies of fragments may exist in the dynamic proxies, the issue of

cache coherency arises. When changes to source data cause a fragment to become invalid,

some mechanism must be in place to ensure that all dynamic proxies are aware of this

change so that all serve the correct version of the fragment. Having described the system

architecture, we now delve into the technical details.

3.1.3 Technical Details

Our dynamic proxy caching system consists of two main phases: (a) system initialization,

and (b) run-time operation. In this section, we discuss these two phases, followed by an

in depth discussion of the system components.

System Initialization Phase

A prerequisite of our dynamic proxy caching system is that the cacheable fragments be

identified and marked. This is an initialization activity which we refer to as tagging.

The tagging process enables page layouts to be determined dynamically at run-time as

described in Section 2.4.1. Figure 2.4 shows the category.jsp script with the tags inserted.
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As this figure shows, each tag contains a begin and end tag which surround a particular

code block.

Now, we describe the format of these tags. A begin tag has the following basic for-

mat: <dpc:fragmentID:ttl>, where dpc is a constant which indicates the start of a tag,

fragmentID is a unique string to identify the fragment, and ttl is an optional time-to-

live value. The fragmentID can be further decomposed into two elements: name and

parameter-List, where name is a name assigned to the fragment and parameterList is an

optional list of run-time parameters. For example, as shown in Figure 2.4, the Naviga-

tion Bar code blocks has been assigned the fragmentID nbKey, consisting of only the

fragment name and a ttl of 1 day (3600 minutes). The Product Category Detail frag-

ment has been assigned a fragmentID consisting of pcKey (the name) and the catID pa-

rameter (the parameterList), delimited by +. Thus, at run-time, in our running example,

the request would result in this fragmentID being instantiated as pcKey+catID=Fiction.

The end tag is constant and has the format:</dpc>. Note that these tags can be easily

extended to incorporate additional functionality (e.g., keywords to support keyword-

based invalidation).

Run-Time Operation

At run-time, a user submits a request to the site. This request, e.g.,

http://www.booksOnline.com/category.jsp?categoryID=Fiction is passed through to the

application server. This causes the category.jsp script to be invoked with the parameter

name-value pair categoryID-Fiction. The application logic in the script runs as usual,

until a tagged code block is encountered. When such a code block is encountered, a

check is made to see whether the fragment produced by that code block exists in the

DPC. This is done by looking up the fragmentID in the BEM’s cache directory. The

cache directory will be described in detail in the next section. For now, it is sufficient

to know that the cache directory contains the fragmentIDs and additional meta-data for

each fragment in the DPC.

When a request is made, there are two general cases possible:
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1. The fragmentID is not in cache or is in cache but invalid. In this case, an entry is

inserted into the cache directory for this fragment, the content is generated, and a

SET instruction is written to the page template. This instruction will insert the

fragment into the DPC.

2. The fragmentID is in cache and is valid. In this case, a GET instruction is written

to the page template. This instruction will retrieve the fragment from the DPC.

1 Y 60

2 Y 60

frag1

Y 60

FragID DpcKey TTL

DpcKey

isValid

...<dpc:2:SET>HTML for Navigation Bar...</dpc>

Case 2 : FragmentID is found

Write SET instructions

Insert into cache directory

Generate content

Write GET instructions

frag1

nbKey

Case 1 : FragmentID not found (or is invalid)

...<dpc:2:GET>...

Navigation Bar

</dpc>

<dpc:nbKey:60>

logic...

Check cache
directory for fragmentID

1

FragID isValid TTL

Figure 3.3: Serving Requests

Figure 3.3 illustrates this run-time operation for the Navigation Bar code block

in our running example. As this figure shows, a cache directory lookup is done for the

nbKey fragmentID. If the fragmentID is not found or is invalid (Case 1 in Figure 3.3),

an entry is inserted into the cache directory. Details of this process will be described in

the next section. For now, it is sufficient to know that the BEM assigns a key that is

used by the DPC (labeled as DpcKey in the figure). The Navigation Bar code block

executes to generate the content, which is then written to the template, along with a

SET instruction. If the fragmentID is found in cache (Case 2 in Figure 3.3), only the key

and a GET instruction are written to the template. Similar processing would be done

for the remaining cacheable code blocks.

For the first request for a given page, none of the fragments will be in cache, so the

layout will consist of SET instructions, along with the generated content. For subsequent

requests, the cacheable fragments will likely be cached, assuming that they have not been
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invalidated. In this case, the layout will consist mostly of GET instructions and hence

will be much smaller. A mockup of the first and second requests for the example is

shown in Figure 3.4 for comparison, assuming that all fragments are found in cache for

the second request. Note that the size of the layout for the second request is smaller

than that of the first request, even for this simple example.

....HTML for Personal Greeting...

<dpc:1:get>

<HTML>...HTML for Banner Ad...

...HTML for Personal Greeting

<dpc:2:get>

Template for Subsequent ReuqestTemplate for First Request

</HTML>

<dpc:3:get>

<dpc:2:set>HTML for Product Category Detail...</dpc>

</HTML>

<dpc:3:set>HTML for Product Recommendations...</dpc>

<dpc:1:set>HTML for Navigation Bar...</dpc>

<HTML>...HTML for Banner Ad...

Figure 3.4: Example Templates

Having described the run-time operation of our system, we are now ready to discuss

the system components in greater detail.

System Components

In this section, we provide a detailed explanation of the two main components of our

dynamic proxy caching system, the Dynamic Proxy Cache (DPC) and the Back-End

Monitor (BEM).

The DPC is a proxy cache that stores dynamic fragments and assembles these frag-

ments on demand using run-time page layout instructions. The DPC assembles pages by

following the instructions provided by the BEM (to be described in more detail later in

this section). All cache management functionality for the DPC is handled by the BEM

as well. The structure of the DPC cache is straightforward: it is implemented as an

in-memory array of pointers to cached fragments, where the DpcKey serves as the array

index.
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The BEM resides at the back-end and has two primary functions: (1) managing the

cache for the DPC, and (2) caching intermediate objects. We proceed to describe each

of these functions. Managing the DPC cache is a critical function of the BEM. This

function is enabled by the cache directory, a critical data structure contained in the

BEM. The cache directory keeps track of the fragments in the DPC and their respective

meta-data. The cache directory has the following basic structure:

fragmentID unique fragment identifier (name+parameterList)

dpcKey unique fragment identifier assigned by Key Mapping algorithm

isValid flag to indicate validity of fragment

ttl time-to-live value for fragment

The dpcKey is a unique integer identifier associated with each fragment that serves

as a common key for both the BEM and the DPC. There are two reasons why we use

this dpcKey. First, it reduces the tag size. The fragmentIDs described in the previous

section are typically quite long, especially those that include a list of parameters. By

assigning an integer, we are able to reduce the size of the page templates that are sent

to the DPC. Second, as we will soon show, assigning a common key eliminates the need

for explicit communication between the BEM and the DPC.

The dpcKey is assigned at run-time using a Key Mapping algorithm, which we now

describe. The dpcKey is an integer value drawn from some pool of integers (1,2,...,N),

allocated at system initialization. The maximum key value, N, is chosen such that it pro-

vides an upper bound on the number of cacheable fragments. Typically, N is composed

by dividing available memory by the average size of a fragment. This pool of integers

is maintained as queue, which we refer to as the freeList. When a run-time request is

made, a check is done to see whether the fragmentID exists in the cache directory. If

the fragmentID does not exist or exist but isValid is FALSE, i.e., a SET operation is

required, a new entry is inserted into the cache directory as follows: the fragmentID and

ttl are instantiated based on the system initialization configuration described previously,

and isValid is set to TRUE. If the freeList is not empty, the dpcKey for the fragment is
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assigned by taking the next available integer from the head of the freeList, otherwise,

the dpcKey value is one more than the maximum key value used so far. This dpcKey

(obtained through mapping) is inserted into the page template and used as the key in

the DPC. This procedure is shown as the SET procedure in Algorithm 1. The content

obtained for the fragment is also sent to DPC along with dpcKey. This content will be

cached at the DPC and identified with corresponding dpcKey. If the fragmentID exist in

the BEM cache directory and isValid is TRUE, then the corresponding dpcKey is taken

from the cache directory and the dpcKey is inserted into the page template with GET

instruction to DPC, so that the content for the dpcKey should be obtained from the

DPC cache. The DPC cache is implicitly flushed, whenever a mapped number is reused

in course of time.

Algorithm 1: Key Mapping Algorithm

Note: Maximum size of freeList ≥ maximum cache size/average-fragment-size.

Input:

freeList having maximum size n

maxUsed: number of occupied slots in freeList

1: INIT

2: freeList.maxUsed=0

3: SET

4: if fragmentID is not mapped then

5: if freeList is empty then

6: dpcKey = maxUsed

7: increment maxUsed

8: else

9: dpcKey = freeList.pop

10: REMOVE
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11: if fragmentID is mapped then

12: freeList.insert(dpcKey)

There are two basic ways in which fragments can become invalid: (a) an invalidation

policy determines that a fragment is invalid, or (b) a replacement policy determines

that a fragment should be evicted from cache. A cache invalidation manager monitors

fragments to determine when they become invalid. Fragments may become invalid due

to, for instance, expiration of the ttl or updates to the underlying data sources. A cache

replacement manager monitors the size of the cache directory and selects fragments for

replacement when the directory size exceeds some specified threshold.

In any case, the fragment’s isValid flag will be set FALSE to indicate that it is no

longer valid. When this occurs, the dpcKey for the fragment is inserted at the freeList.

This technique ensures that a subsequent request for the fragment will be generated

and served fresh. This procedure is shown as the REMOVE procedure in Algorithm

1. It should be emphasized that our Key Mapping Technique is independent of the

invalidation and replacement policy utilized.

Note that the size of the freeList should be at least as large as the maximum cache

size/average-fragment-size. This is due to the fact that invalid fragments are not explic-

itly removed from the DPC. Rather, the slots corresponding to these fragments simply

remain unused until they are subsequently assigned to a new fragment by the BEM. For

example, suppose the Navigation Bar fragment, having dpcKey 2, becomes invalid. It

is marked as such by the BEM and “2” is inserted back into the freeList. No action is

taken by the DPC. Eventually, dpcKey 2 will be assigned to a fragment (either the Nav-

igation Bar fragment or a new fragment) by the BEM, at which time the appropriate

content will be inserted into the corresponding slot in the DPC.

In addition to managing the DPC, the BEM can also cache certain types of objects

if needed. In some cases, it may be beneficial to cache intermediate objects rather than

user deliverable fragments. For instance, consider our earlier example in Section 3.1,

where a user profile object is used to generate both the Personal Greeting and the
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Recommended Products fragments. The site may choose to cache the intermediate

user profile object so that it can be used across multiple requests by that user. The BEM

supports caching of such objects. In fact, the BEM is capable of caching any arbitrary

object that is serializable. Objects that are cacheable are tagged in a manner similar

to the tagging method described in Section 2.4.1. However, these objects are given a

special identifier to indicate that they are to be cached in the BEM and not sent to the

DPC (since the DPC is not able to manipulate arbitrary objects).

Having described the technical details of our proposed approach, we now examine

the benefits of this approach. In the next section, we present an analysis that attempts

to quantify these benefits.

3.2 Analytical Results

There are two types of benefits that accrue in our model: (a) performance and scalability

of the server side, and (b) bandwidth savings. In this section, we analyze these benefits.

Table 3.1 contains the notation to be used throughout this section.

Table 3.1: Notations

Symbol Description

ε= {e1, e2, ...., em} set of fragments
C= {c1, c2, ...., cn} set of pages
Ei= {ej : ejǫci} set of fragments corresponding to page ci

sej
average size of fragment ej (bytes)

g average size of tag (bytes)
f average size of header information (bytes)
h hit ratio, i.e., fraction of fragments found in cache
R total number of requests during observation period

In our analysis, we wish to compare the bandwidth savings for two cases: (a) with the

dynamic proxy cache and (b) without the dynamic proxy cache. We next describe our

assumptions and derive a generic expression for the number of out-bound bytes served

by a given website infrastructure, i.e., the number of bytes transmitted between the
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Back-end and the DPC during a given time period. We then derive specific expressions

for each of the two cases.

Recall from our discussion in Section 2.2 that a dynamic script generates pages. For

the purposes of this analysis, we model a given web application as a set of such pages C

= {c1, c2, ..., cn}. Each page is created by running a script (as described in Section 3.1.3),

and the resulting page consists of a set of fragments, drawn from the set of all possible

fragments, ε= {e1, e2, ..., em}. We let Ei, Ei ⊆ ε, be the set of fragments corresponding

to page ci. Referring back to our running example, the page shown in Figure 2.1(a), i.e.,

the Fiction category page consists of several fragments, e.g., Banner ad, Navigation

Bar. There exists a many-to-many mapping between C and ε, i.e., a page can have many

fragments and a fragment can be associated with many pages. We are interested in the

size of a page, which depends on the size of its constituent fragments. The exact size of a

fragment cannot be determined a priori, since it will depend upon a variety of run-time

factors (e.g., query selectivity). Thus, we use the average size of a fragment ej, which

we denote by sej
. Each page also has f bytes of header information associated with it.

Header information includes HTTP headers, such as Server, Content-type.

We define expected bytes served, B̄ as the average number of bytes served by the

website that is hosting the application during some time interval. In other words, B̄ is

the number of bytes transferred between the back-end and the DPC during some period

of interest. To compute B̄, we need to know the size of each response and the number of

times the page is accessed during the time interval. A response refers to the content that

is generated by the application server to represent the requested page. In our analysis,

we are interested in capturing the impact of our system on the bandwidth requirements

for the dynamic content that is served. One question that may arise is the impact of

static content on bandwidth requirements. In most modern websites, static content (e.g.,

images, HTML files) is served from a proxy cache outside the site infrastructure. Thus,

in steady-state, static content will be served from a proxy cache and therefore will not

impact bandwidth requirements between the web server and the proxy cache. For this

reason, we do not incorporate the bandwidth requirements for static content in this
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analysis.

When the dynamic proxy cache is not used, the response size is simply the page size.

However, when the dynamic proxy cache is used, the size of the response will be different

from the page size due to the inclusion of the tags and the exclusion of the cacheable

content. Let Sci
be the size of the response corresponding to page ci as delivered by the

hosting site, and ni(t) be the number of times the page ci accessed during the specified

time interval. Then the general form of B̄ over a given time interval is given by: Σn
i=1

Sci
× ni(t). Note that Sci

will be different for the no cache and dynamic proxy cache

cases, while ni(t) will be the same. We now proceed to derive expressions for ni(t) and

Sci
.

In deriving an expression for ni(t), we need to characterize the access rate for a given

page, e.g., the probability that the Fiction category page is requested, and the arrival

rate of requests to the www.booksOnline.com site. Let P(i) be the probability that page

ci is accessed for a given request and f(t) be the probability density function (pdf) that

describes the arrival rate of requests. Then the number of times page ci is accessed

during the interval (t1,t2) is P(i)
∫ t2
t1

f(t)dt. Our general expression for expected bytes

served then becomes:

B̄ = Σn
i=1

Sci
× P(i) ×

∫ t2

t1

f(t)dt (3.1)

We assume that P(i) is governed by the Zipfian distribution, which has been shown

to describe web page requests with reasonable accuracy [3, 18]. Thus, the probability

that page ci is accessed for a given request, P(i), is given by 1/(i ×Σn
i=1

1

i
).

To characterize the arrival rate of requests,
∫ t2
t1

f(t)dt, we do not assume any particular

distribution. Rather, any distribution can be used in Equation 3.1. For the purposes of

this analysis, we consider the number of requests R that occur during some period of

interest. For instance, we may wish to determine the bandwidth requirements during a

period when there are R = 1,000,000 requests that arrive to www.booksOnline.com.

We now derive expressions for response size Sci
, for the two cases. For the no cache

case, the size of the response for page ci, denoted as SNC
ci

, is given by Σ∀ej
ǫci

sej
+f , which is
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the sum of the sizes of all the fragments on the page and the header information. Putting

this all together, the expected bytes served for the no cache case can be expressed as:

B̄NC = R × Σn
i=1

P(i) × SNC
cj

(3.2)

For the dynamic proxy cache case, we must consider first whether a given fragment

is considered to be cacheable. Let Xj be an indicator variable defined as follows:

∀ej
ǫE,Xj =

{

1 if fragment ej is cacheable

0 otherwise

We assume that the cacheability of each fragment is determined at design time. At

run-time, we are interested in the fraction of fragments found in cache, which we denote

as h. Then, the size of the response SC
ci
, is given by Σ∀ej

ǫci
[Xj[(h × g) + (1 − h)(sej

+

2g)] + (1 − Xj)(sej
) + f ]. The first term,Xj(h × g) + (1 − h)(Sej

+ 2g), represents the

case where the jth fragment is cacheable. In this case, there are two possible outcomes

at run-time (a) the fragment is found in cache, in which case the size is the size of the

tag, g, or (b) the fragment is not found in cache, in which case the size includes the size

of the fragment as well as the size of the two tags required (the start and end tags). The

second term in this expression, (1 − Xj)(sej
), represent the case where the fragment ej

is not cacheable and hence, the size simply the size of the fragment.

Putting this all together yields the following expression for expected bytes served in

the case where the dynamic proxy cache is used:

B̄C = R × Σn
i=1

P(i)Σ∀ejǫci
[Xj[(h × g) + (1 − h)(sej

+ 2g)] + (1 − Xj)(sej
) + f ] (3.3)

We have compared the expected bytes served for the two cases using the baseline

parameter values shown in Table 3.2. Our choice of 0.8 as the baseline hit ratio is driven

largely by the numerous studies that have shown that web requests often exhibit local-

ity [3, 18]. Furthermore, our experience with several large enterprise web applications

indicates that such hit ratios are easily achievable in practice.
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Table 3.2: Baseline Parameter settings for Analysis

Parameter Value

hit ratio (h) 0.8
fragment size (se) 1Kbytes
number of fragments per page 9
number of page instances 250,000
average size of header information (f) 500 bytes
tag size (g) 10 bytes
cacheability factor 0.6
number of requests during interval (R) 1 million

In this comparison, we plot the ratio B̄C

B̄NC . Figure 3.5 shows the results of this

comparison as fragment size (se) is varied. as this figure shows, this ratio decreases

as fragment size increases. For small fragments sizes (e.g., less than 1 KB), the ratio

exhibits a steep drop. This drop can be explained as follows: for small fragment sizes,

the size of the tags is large with respect to the fragment size, decreasing the savings in

bytes served for the dynamic proxy cache. This is why the ratio is greater than 1 as

the fragment size approaches 0. As these results indicate, our dynamic proxy caching

technique has a greater impact for larger fragment sizes (e.g., greater than 1 KB). This

can also be used as a guideline to implement fragment caching. If most of the fragments

in a dynamic web site are smaller in size and take very less time to compute, then better

to turn off the fragment caching.

We now examine the sensitivity of expected bytes served to changes in key parameter

values. We begin by varying hit ratio (h), while holding all other parameter values

constant. Figure 3.6 shows the percentage savings in expected bytes served as the hit

ratio is varied from 0 to 1. In the case where no fragments are served from cache (i.e., h =

0), we see that the savings is negative. In other words, there is a cost to use the dynamic

proxy cache in this case because it adds tags to the responses, thereby increasing the

response sizes. This effect holds up to the point where h = 0.01. Thus, as long as 1%

or more fragments are served from cache, using the dynamic proxy cache will reduce the

expected bytes served. Clearly, the greatest savings occurs when all fragments are served
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from cache (i.e., h = 1).
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Figure 3.5: Analytical Results - Expected Bytes Served : B̄C/B̄NC vs. Fragment
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Figure 3.6: Analytical Results - Expected Bytes Served : Expected Bytes
Served (%) vs. Hit Ratio

The foregoing results indicate that the dynamic proxy cache is indeed beneficial in

terms of reducing the expected number of bytes transferred. The dynamic proxy cache,

however, incurs a cost. In particular, assembly of the page at the dynamic proxy cache

requires that each response be scanned for the tags. A logical question that arises is: does

the savings in bytes transferred offset the cost to scan? We now provide a comparative

analysis in an attempt to answer this question. More specifically, we compare the savings

in expected bytes served to the scan cost. Note that regardless of whether the dynamic

proxy cache is used, each packet is scanned by the firewall. Let y be the cost for the

firewall to scan a byte. Then the cost to scan in the case where no cache is used is given
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by:

scanCostNC = B̄NC × y (3.4)

Let z be the scan cost per byte for the dynamic proxy cache. Then the cost to scan

in the case where the dynamic proxy cache is used is scanCostC = B̄C(y + z). Both the

firewall and the dynamic proxy cache scan a given string of bytes. Since string matching

algorithms (e.g., KMP [36]) are linear-time algorithms, we can consider the scanning

cost for the firewall and the dynamic proxy cache to be of the same order. Thus, we

assume that z ≈ y. Making this substitution, our expression for the scan cost per byte

for the dynamic proxy cache becomes:

scanCostC = B̄C × 2y (3.5)

In comparing our expressions for the cost to scan in both Equations ( 3.4) and ( 3.5),

we expect the dynamic proxy cache to provide better performance when the following

condition holds: B̄NC > 2B̄C . Thus, we can conclude the following result:

Result 1 It is preferable to use the dynamic proxy cache when the expected bytes

served with no cache are more than twice the expected bytes served with cache.
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Figure 3.7: Analytical Results : Comparison of Cost Savings

Figure 3.7 shows a comparison of Equations ( 3.4) and ( 3.5) as the cacheability factor
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is varied (using again the parameter settings in Table 3.2). The cacheability factor is

the percentage of all fragments that are cacheable for a given application. Thus, the

figure shows two plots: (a) the savings in expected bytes served, and (b) the savings in

bytes scanned (both expressed as percentages). The upper curve shows the savings in

bytes served. As expected, this saving increases as the cacheability ratio increases. Note

that this savings is positive over the entire range, indicating that employing the dynamic

proxy cache will always decrease the bytes served. The lower curve shows the savings in

the scan cost. The savings in this case also increases as the cacheability ratio increases.

An important difference in this curve is that the savings in bytes does not always offset

the scan cost, as indicated by the negative range. More specifically, using the parameters

we have selected, if the cacheability ratio is less than about 50%, then it is not worth

caching since the scan cost is greater than the savings in bytes served.

3.3 Experimental Results

In this section, we attempt to validate our analytical results obtained in Section 3.2 with

a set of experimental results.

We have implemented our dynamic proxy caching system. Both the DPC and the

BEM are written in C++. The DPC is built on top of Microsoft’s ISA Server [45] so

that we can take advantage of ISA Server’s proxy caching features. The page assembly

code is implemented as an ISAPI filter that runs within ISA Server.

Our experiments were run in a test environment as described in Section 3.2. Thus,

we have incorporated the parameter settings in Table 3.2. The test site is an ASP-based

site which retrieves content from a site content repository.

The basic test configuration consists of a web server (Microsoft IIS), a site content

repository (Oracle 8.1.6), a firewall/proxy cache (ISA Server), and a cluster of clients.

The client machines run WebLoad, which sends requests to the web server. For the

dynamic proxy cache case, the DPC runs on the ISA Server machine, and the BEM

runs on the IIS machine. Communication between all software modules is via sockets
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over a local area network. Figure 3.8 shows the test configuration. This figure attempts

to show both the logical and physical test configurations. The origin site components

(web server, DBMS, and BEM) run on one machine (labeled Origin Site), while the

components that reside outside the site infrastructure (firewall, proxy cache, and DPC)

run on another machine (labeled External).
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Figure 3.8: Test Configuration

The number of bytes served is obtained by measuring bandwidth using the Sniffer

network monitoring tool [61]. More precisely, the bandwidth measurement is taken

between the Origin Site machine and the External machine in Figure 3.8. In these

experiments, we are interested in capturing the impact of our system on the bandwidth

requirements for the dynamic content that is served. Based on our earlier discussion

regarding static content, the static content in these experiments is cacheable in the ISA

server proxy cache. Thus, in steady-state, static content will be served from the ISA

server proxy cache and therefore will not impact bandwidth requirements between the

web server and the DPC.

Figure 3.9 shows the ratio B̄C

B̄NC as fragment size is varied. Our results from Section 3.2

are repeated here (the curve labeled “Analytical”) for comparison purposes. As this figure

shows, our experimental results follow our analytical results closely. Interestingly, the

analytical curve falls below the experimental curve. This difference can be explained by

the network protocol headers (e.g., TCP/IP headers) that are included in the responses,
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Figure 3.9: Analytical and Experimental Results : B̄C/B̄NC vs. Fragment Size

which the Sniffer tool captures in its bandwidth measurements. However, we do not

account for these headers in our analytical expressions. Thus, for every response, there

is some network protocol messaging overhead. The smaller the response, the greater this

overhead is. This is why the difference between the analytical and experimental curves

is higher for smaller fragment sizes than it is for larger fragment sizes.

As in Section 3.2, we now examine the sensitivity of expected bytes served to changes

in hit ratio. Figure 3.10 shows a comparison of this sensitivity for the analytical (curve

repeated from Figure 3.6) and experimental cases. Here again, our experimental results

closely follow our analytical results. In this case, the analytical curve is slightly higher

.than the experimental curve, and the difference increases as the hit ratio increases.

This is again a result of the network protocol headers that are included in the bandwidth

measurements. Specifically, as more content is served from cache, response size decreases,

yet the network protocol message size remains constant. Thus, the message overhead

increases with respect to the response size as hit ratio increases, causing the savings to

be smaller in the experimental case.

Figure 3.11 shows a comparison of the sensitivity of expected bytes served to changes

in cacheability. The analytical curve is repeated from Figure 3.7 (the upper curve). Once

again, the experimental results follow our analytical results closely. We also observe again

the effects of the network protocol headers that are included in the experimental results,
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Figure 3.11: Validation of Analytical Results : Validation of Cost Savings

which cause the analytical curve to be higher than the experimental curve.

3.4 Case Study

In this section, we present a case study which describes the use of our dynamic proxy

caching system in a large enterprise. We have deployed our system on a web application

at a large financial institution. The application provides a variety of financial information

to end users by retrieving data from a number of data sources such as database systems,

content management systems, and remote web servers. Pages in the site are generated

using ASP scripts.

We performed a set of experiments using this application to compare the performance

of our proxy-based caching system with that of a system without any caching. Each page
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selected for the experiments consists of 9 fragments, including Market Index, Market

Forecast, Research News, and Financial Resources. Each fragment is generated

from a different data source. The average size of each fragment is about 1 KB. For

the dynamic proxy cache, all of the 9 fragments are tagged as cacheable. The Market

Index fragment has a ttl of 5 minutes, while all other fragments have ttls of 30 minutes.

An important aspect of this application, like many existing dynamic web applications,

is that both the page layout and content are dynamic. The page layout and content

depend upon the user’s profile and the time of day. For instance, a user who requests

a page in the morning gets a page containing today’s Market forecast at the top

of the page, the Market Index on the left side of the page, Research News and

Financial Resources in the center of the page, and the remaining fragments on the

bottom portion of the page. When the same user request this page at the end of the

day, the page contains today’s Market Summary and Market Highlights at the top

of the page, tomorrow’s Market Forecast on the left of the page, and so on.

The test configuration used here is the same basic configuration shown in Figure 3.8.

Performance metrics used are bandwidth, in bytes per second, and average response time,

the end-to-end delay in delivering an HTML page. In our experiments, we vary load,

measured in transactions per second (TPS). As in our experiments in Section 3.3, band-

width is measured between the web server and the DPC using Sniffer. Also, as in our

previous experiments, static content is served from the ISA Server proxy cache and thus

does not impact our bandwidth measurements. Average response time is measured using

the WebLoad load testing tool [55].

Figure 3.12 shows the performance results in terms of bandwidth as load is varied.

Note that the y-axis is shown on a log scale. In both the no cache and cache cases,

bandwidth increases as load increases. However, the no cache curve is much higher than

the cache curve. As load increases beyond about 10 TPS, the dynamic proxy cache

results in an order-of-magnitude reduction in bandwidth.

Given that the proxy-based cache requires additional scanning of the page templates,
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Figure 3.13: Experimental Results : Comparison of Response Times

it is of interest to examine the impact on response times. Figure 3.13 shows the perfor-

mance results in terms of average response time as load is varied. As this figure shows,

the cache case significantly outperforms the no cache case under the conditions used in

our experiments. In fact, the cache case provides an order-of-magnitude reduction in

average response times over the entire range shown.

3.5 Extensions to this Work

The approach considered in this chapter assumes a reverse proxy configuration, in which

a single instance of the cache sits between a website’s firewall and the Internet, serving

cached dynamic content from outside the site’s infrastructure. This provides significant
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bandwidth savings within the site’s infrastructure, but does not impact bandwidth usage

between the site and the end user.

An ideal approach would place the dynamic proxy cache on the edge, serving dynamic

content from a point close to the end user and providing bandwidth savings not only

within the site infrastructure, but also between the site and the forward proxy cache. In

this approach, a number of forward proxies would be placed at strategic points around

the network to provide optimal coverage. Since content would be served from the edge

of the network, end users would see dramatic improvements in response time.

There are, however, a number of technical challenges associated with this approach.

• Request Routing: With multiple dynamic proxy caches out on the network, how

can we route requests for dynamic content optimally across the cache set? Most

work in this area addresses the problem of routing static content identified by a

URL. However, we are interested in routing fragments of dynamic content rather

than full pages, which cannot be identified with a URL. Another complication

within this area is the issue of handling proxy failure. Here, requests routed to a

given dynamic proxy cache must fail-over seamlessly and transparently (from the

user’s point of view) to another proxy cache.

• Cache Coherency: How do we handle issues of cache coherency across multiple

distributed caches? Here, multiple copies of a particular fragment may reside on

different dynamic proxy caches distributed across the network. Some mechanism

must be in place to ensure that correct responses are served to end users from the

caching system.

• Cache Management: How do we manage the content of multiple caches? Changes

to the data source on a site cause fragments to become invalid. The dynamic proxy

caches distributed across the network need some means of obtaining notice of such

changes.

• Scalability: Clearly, a system comprised of multiple caches distributed across the

network and addressing the issues noted above must contain some complexity
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within its protocols. However, this system must be capable of serving heavy traffic

loads in real time. In other words, the data structures and algorithms underlying

the system must scale, both in time and space requirements.

• Storage Vs. Bandwidth tradeoff: When we extend the present model from single

proxy to multiple proxies, we have to consider the tradeoff bewteen the storage

requirements and bandwidth savings.

Some of these issues are addressed in the recent work reported in [22].

3.6 Conclusions

In this chapter, we have proposed an approach for granular, proxy-based caching of dy-

namic content, a proxy-side caching with a coupling between contents stored at proxy-

cache and data origin, without extra communication cost to refresh cache contents. The

novelty in our approach is that it allows both the content and layout of web pages to be

dynamic, a critical requirement for modern web applications. Our approach combines

the benefits of existing proxy-based and server-side caching techniques, without their

respective limitations. We have presented the results of an analytical evaluation of our

proposed system, which indicates that it is capable of providing significant reductions in

bandwidth on the site infrastructure. Furthermore, we have described an implementa-

tion of our system and presented a case study which details the performance results of

this system on a major real-world dynamic web application. Our implementation results

demonstrate that our system is not only capable of providing order-of-magnitude reduc-

tions in bandwidth requirements, but also order-of-magnitude reductions in end-to-end

response times.
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Hybrid Caching

4.1 Overview

The previous chapter dealt with proxy-based caching. We now turn our attention to

server-side caching. Server-side caching is particularly attractive for dynamic websites,

since it can guarantee freshness of contents. In this chapter, we propose an architecture

to address the dynamic page generation delays by a hybrid technique of fragment caching

and anticipatory page pre-generation. The work presented in this chapter refers to server-

side caching, shown as Hybrid Caching in Figure 1.4, in Section 1.4.

We consider here mechanisms for reducing the server latency, during normal loading,

by utilizing the excess capacity with which web servers are typically provisioned [59]. We

propose a hybrid architecture of fragment caching and anticipatory page pre-generation.

Specifically, we present a caching technique that integrates fragment caching with an-

ticipatory page pre-generation in order to deliver dynamic pages faster during normal

operating situations. A feedback mechanism is used to tune the page pre-generation

process to match the current system load. The experimental results from a detailed

simulation study of our technique indicate that, given a fixed cache budget, page con-

struction speedups of more than fifty percent can be consistently achieved as compared

to a pure fragment caching approach, during normal loading.

Here, we consider the possibility of achieving significant reductions in server latencies,

63
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and thereby user response times, by resorting to dynamic page pre-generation, in con-

junction with fragment caching. The page pre-generation is based on having a statistical

prediction mechanism for estimating the next page that would be accessed by a user

during a session. The page pre-generation is executed during the time period between

sending out the response to the user’s current request and the receipt of her subsequent

request. Note that in the case where the page prediction turns out to be right, the page

pre-generation effectively reduces the server latency to zero, which is the best that could

be hoped for from the user perspective.

An unsuccessful page pre-generation on the other hand represents wasted effort on

the part of the server. This may not be an issue for web-servers that are under nor-

mal operation since these systems are usually over-provisioned in order to handle peak

loads [59], and therefore some wastage of the excess capacity is not of consequence. But,

during peak loads, the additional effort may further exacerbate the system performance.

To address this problem, we incorporate a simple linear feedback mechanism that scales

down the degree of page pre-generation to match the current system load. Here, for feed-

back mechanism, we consider only the load on the application servers, assuming that the

back-end servers are optimized with techniques like table caching, query caching and so

on.

A related design issue is that we need to allocate space in the server cache to store

the pre-generated pages. That is, the cache has to be partitioned into a fragment space

and a page space, and the relative sizing of these partitions has to be determined.

Our hybrid approach of combining fragment caching with page pre-generation ensures

the freshness of content through either fresh computation or by accessing fragments from

the fragment cache. Further, it ensures the correctness of pages by pre-generating pages

specific to individual user. In a nutshell, our approach achieves both the long-term

benefit through fragment caching and the immediate benefit through anticipatory page

pre-generation.

Using a detailed simulation model of a dynamic web-server, we study the perfor-

mance of our hybrid approach in terms of reducing dynamic page construction times,
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as compared to pure fragment caching and pure page pre-generation approaches. Our

evaluation is conducted over a range of fragment caching levels and prediction accura-

cies, for a given cache budget. The results show that under normal loads, we are able to

achieve reductions in server latency by over fifty percent on average as compared to pure

fragment caching, whereas under heavy loads, we do no worse. Further, the number of

pages delivered with zero server latency is proportional to the prediction accuracy.

Contributions

In summary, the contributions of this chapter are the following:

1. We propose a hybrid caching approach of combining fragment caching with page

pre-generation to reduce dynamic webpage construction times.

2. We demonstrate that robust settings exist for the relative sizing of the cache par-

titions for pre-generated pages and fragments, respectively.

3. We incorporate a simple linear feedback mechanism to ensure that the system

performance is always as good or better than that of pure fragment caching.

4. Our experimental results show that significant improvements in page generation

times can be achieved through the hybrid caching approach as compared to pure

fragment caching.

Organization

The remainder of this chapter is organized as follows: In Section 4.2, we discuss the hybrid

architecture-namely fragment caching with anticipatory page pre-generation along with

a load-thresholding feedback system. Section 4.3 describes an analytical model. The

simulation model to evaluate the various alternatives is described in Section 4.4. The

experimental results are highlighted in Section 4.5. Finally, in Section 4.6, we summarize

our contributions and outline future research avenues.
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Figure 4.1: The Proposed Hybrid Model

4.2 A Hybrid Approach to Dynamic Page Construc-

tion

In this section, we describe in detail our proposed hybrid caching architecture. This

architecture is based on fragment caching (described briefly in Section 2.4.1) and page

pre-generation (described briefly in Section 2.4).

4.2.1 Combining Page Pre-Generation and Fragment Caching

Our proposed hybrid model is an integration of anticipatory page pre-generation and

fragment caching. A high level representation of the proposed hybrid architecture is

given in Figure 4.1.

In a typical dynamic web server, there are various components in the system leading to

server latencies. Application servers interact with back-end servers like database servers

and file systems. There are various solutions to address latencies due back-end servers

like caching the results of database queries, caching database tables, caching database

tables in main memory and so on [13, 42, 4, 50]. In our simulation, we assume that the

back-end servers are already optimized and they are not the bottlenecks in the system.

Hence, for feedback mechanism, we consider only the load on the application servers.
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Here, for each individual user session, when a response for a request leaves the web

server, the web server decides whether or not to pre-generate the next most expected

page for the associated user, based on considerations such as the system’s current load,

the benefit of pre-generating a page, the type of user and so on. If the system decides

to pre-generate a page for a particular user, it requests the page pre-generator to carry

out the page pre-generation for this user. When the web server receives the next page

request from this user, it checks whether the page is already available with the page

pre-generator. If the page is available, the page is immediately served. If not, the page is

freshly computed by the web/application server as usual. The page pre-generator retains

only the pre-generated pages of current active users.

Note that the user response leaving the web server will take some time to reach the

user and the user will then take some time to click the next page. We expect that under

normal operating conditions, this time delay is sufficient for the page pre-generator to

complete the page pre-generation process before the arrival of the next request of the

same user. The implication is that in case of a correct prediction, the server latency in

terms of page construction time is brought down to zero.

Further, note that the proposed solution is guaranteed to serve fresh content, since it

is associated with the origin server. Moreover, it also ensures serving correct pages, since

the page pre-generation is specific to the user session and is not generic across users.

From a broad perspective, by fragment caching we are achieving the long-term benefit

whenever the fragment is reused in course of time, whereas by page pre-generation we

are achieving the immediate benefit for the current user.

4.2.2 Server Cache Management

In a pure fragment caching approach, the server cache can be used solely for hosting

these fragments. However, in our hybrid approach, we need to allocate space for hosting

pre-generated pages as well. Therefore, we partition the cache into a fragment cache and

a page cache (here, a page we mean HTML page, but not memory page).

We consider two separate caches for fragments and pages, since they differ in both in
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replacement policy and reusability. Fragments can be reused across different pages and

they are managed by a replacement cache policy. Whereas, cached pages are specific

to individual user, hence no-reusability. Since, cached pages are also short lived do not

require any replacement policy.

Cache Partition Sizing:

An immediate issue that arises here is determining the relative sizes of the fragment

and page cache partitions. This issue is investigated in detail in our experimental study

presented in Section 4.5 – our results there indicate that a 50-50 partitioning works well

across a range of page prediction accuracies and fragment cacheability levels.

Cache Replacement Policies:

With regard to the fragment cache, we are not aware of any web logs that are available

to track the reference patterns for fragments. This restricts us to the use of simple

techniques like Least Recently Used (LRU) for managing the fragment cache.

With regard to the page cache, we do not expect to require an explicit replacement

policy since the utility of pages in the cache is typically short-lived – that is, until

the arrival of the next request by the user – after this arrival, the page is immediately

vacated from the cache. However, to address those uncommon cases where the page cache

is completely filled with active pre-generated pages, we adopt the simple mechanism of

blocking further page pre-generations until some of the existing pages expire.

An association between the fragments in the fragment cache and the pre-generated

pages in the page cache is maintained by the page pre-generator. Whenever a fragment

is invalidated, all the pre-generated pages associated with it are marked invalid.

4.2.3 Server Load Management

While page pre-generation is useful for reducing response times, it also involves expense

of computational resources. This is acceptable under normal operating conditions, even if

the page prediction accuracy is not good, since web-servers are typically over-provisioned
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in order to be able to handle peak load conditions [59], and we are only using this excess

capacity. But, when the system is under peak load conditions, the wasted resources due

to the mistakes made by the page pre-generation process may actually exacerbate the

situation, driving the system into a worse condition. To address this issue, we implement

a simple linear feedback mechanism that modulates the pre-generation process to suit

the current loading condition. Specifically, we periodically measure the system load,

and if it exceeds a threshold value, the role of the page pre-generator is restricted in

proportion to the excess load. For feedback mechanism, we consider only the load on the

application servers, assuming that the back-end servers are optimized with techniques

like database table caching, query caching and so on.

We have applied a simple linear feedback mechanism in our hybrid model to control

the role played by the page pre-generator during the peak loads. Specifically, for each

outgoing page response, the web server allows the page pre-generator to generate pages

with probability prob gen set as follows:

prob gen = 1 if (current load < threshold load)

prob gen = 100−current load
100−threshold load

otherwise.

When the page pre-generator is restricted, its assigned cache partition may become

underutilized – therefore the size of the fragment cache is dynamically enlarged to cover

the underutilization of the page cache.

4.3 Analytical Results

The benefit that we expect from our hybrid caching architecture is reduced dynamic web

page construction time. In this section, we analyze this benefit. Table 4.1 contains the

notations used in this section.

In our analysis, we wish to compare the the dynamic web page construction times for

four cases : (a) with no optimization; (b) with only fragment caching in place; (c) with

only page pre-generation in place; and (d) the proposed hybrid technique of fragment

caching and page pre-generation.
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Table 4.1: Notations for Hybrid Caching Analysis

Symbol Description

ε= {e1, e2, ...., em} set of fragments
C= {c1, c2, ...., cn} set of pages
Ei= {ej : ejǫci} set of fragments corresponding to page ci

sej
average size of fragment ej (bytes)

WQ average waiting time in queue

We next describe our assumptions and derive a generic expression for the average

time taken to generate a dynamic web page by a given web site infrastructure, when no

optimization is in place. We then derive specific expressions for each of the remaining

three cases.

Recall from our discussion in Section 2.2 that a dynamic script generates pages. For

the purposes of this analysis, we model a given web application as a set of such pages C

= {c1, c2, ..., cn}. Each page is created by running a script (as described in Section 3.1.3),

and the resulting page consists of a set of fragments, drawn from the set of all possible

fragments, ε= {e1, e2, ..., em}. We let Ei, Ei ⊆ ε, be the set of fragments corresponding

to page ci.

In a dynamic web server, normally, there will be a number of applications servers. Ba-

sically, a dynamic web server receives the dynamic page requests from different browsers.

The web server simply selects one of the available application servers to generate the re-

quired page. Here, the dynamic web-server is nothing more than a FCFS queue, since all

it does is to queue the dynamic web page request and submit it to one of the available

application servers. To the best of our knowledge, there are no web logs which logs the

fragment script execution times. The web log analysis reported in [2], states that ac-

cording to an analysis of real world environment, the distribution of the response times,

obtained from the log file, is generally characterized by a very high number of values

with very low response times and a few values with very high response times, that, it is a

Zipfian distribution. Taken in conjunction with the arrival process at web server, which

is usually modelled as Poisson [5], we characterize our system as an M/M/k queue.
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The parameter of our interest is the average page construction time, which is essen-

tially the average waiting time of page requests in the queue (WQ) and the average of

the actual page construction time (script execution time). For M/M/k queuing model,

the average waiting time in queue WQ is given by the below equation [68]:

WQ =
ρ(kρ)kπ0

k!λ(1 − ρ)2
(4.1)

where λ is the arrival rate, k is the number of servers in the system, ρ is defined as:

ρ = λ
kµ

, and µ is the service rate.

Suite of Algorithms

To put the performance of our approach in proper perspective, we compare it against

the following four yardstick algorithms:

Hybrid: This is our new algorithm in which page pre-generation and fragment caching

are simultaneously used, and the cache is partitioned into a page cache and a

fragment cache.

Pure FC: This algorithm implements pure fragment caching (with no page pre-generation).

Pure PG: This algorithm implements pure page pre-generation (with no fragment

caching).

NO FC PG: Neither fragment caching nor page pre-generation is used here, and the

cache does not come into play at all.

We define TNO FC PG as the average time taken by the website that is hosting the

application to generate dynamic web pages without any optimization technique in place.

We also define T Pure FC as the average time taken by the website when only fragment

caching is used, T Pure PG as the average time taken by the website when only page

pre-generation is used, and THybrid as the average time taken by the website when both

fragment caching and page pre-generation used, i.e., in our proposed hybrid caching

architecture.
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Now, we proceed to derive expressions for the above four cases. We obtain the

expression for the base case where no optimization is employed and the dynamic web

page is constructed from the scratch after receiving the request by the web site. In this

case,

TNO FC PG = WQ + Σtei
(4.2)

where WQ is the waiting time of the page request, given by Equation 4.1 and tei
is the

time taken by a fragment ei for its generation.

We now obtain the expression for the case where only fragment caching is used. In

this case,

T Pure FC = WQ + n
′

× cst + (1 − n
′

) × Σtei
(4.3)

where n
′

is the fraction of fragments used from cache, cst is the cache search time for

fragments used from the fragment cache and (1−n
′

) is the fraction of fragments generated

fresh and WQ is same as above.

We now obtain the expression for the case where only page pre-generation is used.

In this case,

T Pure PG = WQ + (Σtei
) × (1 − predictionfactor) (4.4)

where predictionfactor is the page prediction accuracy used and WQ is same as above.

We now obtain the expression for our proposed hybrid cache, where both fragment

caching and page pre-generation are used. In this case,

THybrid = WQ + (n
′

× cst + (1 − n
′

) × Σtei
) × (1 − predictionfactor) (4.5)

We have compared the expected time taken for four cases using the baseline parameter

values shown in Table 4.2, the basis for parameter values is described in Section 4.4. It

is very difficult to obtain exact time of a fragment computation, since it depends upon

various factors, like the time of computation, the load on the system, and so on. Hence

we assume a representative average value. This is not a problem, since our primary focus

is comparing relative performance. The analytical results are shown in Figure 4.2, which
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Table 4.2: Baseline Parameter settings for Analysis (Hybrid Caching)

Parameter Value

average fragment size (sej
) 2Kbytes

average number of fragments per page 9
average page size (se) 20Kbytes
cacheability 50%
page predictability 50%
number of application servers 4
average fragment generation time 20ms
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Figure 4.2: Analytical results: Hybrid Caching

gives the relative performance of the four dynamic webpage construction algorithms. We

see here that the Hybrid approach (labeled as Hybrid in the figure) performs the best

compared to all others and further, it requires less than the half the time to construct

pages as compared to fragment caching (labeled as Pure FC in the figure), the policy

that has been advocated in the recent literature.

The foregoing results indicate that the hybrid caching is indeed beneficial in terms

of reducing the dynamic web page construction time, during normal loading.
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4.4 Simulation Model

To evaluate the performance of the proposed hybrid model, we have developed a detailed

simulator of a web-server supplying dynamic pages to users. Table 4.3 gives the default

values of the parameters used in our simulator – these values are chosen to be indicative

of typical current websites, with some degree of scaling to ensure manageable simulation

run-times. Some of these parameters are worked out from the web log statistics reported

in [60]. For example, we have taken average page size 20KB and averagae session length

10 based on this statistics. Fragment size taken as 2KB based on the observation reported

in [56]. The fanout is fixed based on a conservative value from [38] The average user

think time between requests is set to 5 seconds based on [58]. Some of these parameters

values have been set larger to account for worst case. Cache size is set to 2MB, so that

ratio between cache size and fragment space is 1:8. If we consider bigger cache, we can

achieve even better performance. Page prediction is varied from 20 percent to 80 percent

and similarly fragments cacheability is varied from 20 percent to 80 percent. We also

vary the cache given to fragment cache and page cache from zero percent to 100 percent,

so that we can determine best partition size. Some of the parameters are set based on

our experience in analyzing some web pages.

4.4.1 Web-site Model:

The website is modeled as a directed graph. Each node in the graph represents a dynamic

webpage. Each edge represents a link from one page to another page. A node may be

connected to a number of other nodes. The website graph is generated in the following

manner: We start with a node called the root node, at level zero, and an initial fanout

FanOut. Then, at each level l, for all nodes of that level, the next level nodes are created

and linked, with a uniform random fanout ranging between (0, FanOut − l). When a

fanout of 0 is chosen at a node, the generation process at that node is terminated. In

order to model “back-links”, we permit, in the process of linking a node to other nodes,

even the previously generated nodes of the prior levels to be candidates. The percentage
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of back links is determined by the BackLinks parameter.

4.4.2 Web-page Model:

Each dynamic web page consists of a static part and a collection of identifiable dynamic

fragments. A fraction FragCacheable of these dynamic fragments are cacheable, while

the remaining are not. The number of fragments in a page are uniformly distributed

over the range (MinFragNum, MaxFragNum) and are selected randomly from the Frag-

Population fragments. The cost of producing a fragment is taken to be exponentially

distributed with mean time for fragment generation given by FragCost.

4.4.3 User Model:

The website receives requests from the sessions of different users. The creation of sessions

is assumed to be Poisson distributed [5] with rate ArrRate. Each session generates

one or more page requests, in a sequential manner. The number of pages in a session

are uniformly distributed over the range (MinSessionPage, MaxSessionPage). Between

the page requests of a session, a uniformly distributed user think time over the range

(MinThinkTime, MaxThinkTime) is modeled.

4.4.4 System Model:

We assume that the web server has a cache for dynamic page construction, of size

CacheSize. The fraction of the cache given to the Page-Cache is given by Page-

CacheFraction, with the remainder assigned to the Fragment-Cache. The search times in

the page and fragment caches are determined by the CacheSearchTime parameter. The

accuracy of page access prediction is determined by the PagePredict parameter. The

fragments in the fragment cache are modeled to be invalidated randomly by the data

source with an invalidation rate set by InvalidRate. The threshold load at which the

feedback control mechanism kicks in is set by the ThresholdLoad parameter.



Chapter 4. Hybrid Caching 76

Table 4.3: Simulation parameter settings (Hybrid Caching)

MinSessionPage 1 MaxSessionPage 19
MinPageSize 10KB MaxPageSize 30KB
MinFragNum 1 MaxFragNum 19
MinThinkTime 1 second MaxThinkTime 9 seconds
MinFragSize 1KB MaxFragSize 3KB
FragPopulation 8000 CacheSize 2MB
PageCacheFraction 0 to 100 percent FragCost 20 ms
FanOut 10 BackLinks 20 percent
ArrRate 0 to 5 sessions per second InvalidRate 1/ms
PagePredict 20, 50, 80 percent CacheSearchTime 0.1 ms
FragCacheable 20, 50, 80 percent ThresholdLoad 75 percent

4.5 Experiments and Results

Using the simulation model described in Section 4.4, we conducted a variety of experi-

ments, the highlights of which are described here. The performance metric used in all

our experiments is the average dynamic page construction time, evaluated for various

settings: LOW (20%), MEDIUM (50%) and HIGH (80%) of the page prediction accu-

racy and the cacheability of the dynamic fragments, as a function of the session arrival

rate and the fraction of the cache assigned to page pre-generation. Covering these va-

riety of values permits the modeling of a range of real-life website environments. Also,

the arrival rates are set so as to model both normal loading conditions as well as peak

load scenarios. The simulator was written in C++SIM [8], an object-oriented simulation

testbed. The experiments were conducted on Ultra-Sparc/Solaris 2.6 workstations.

4.5.1 Experiment 1: Page Construction Times (Normal Load)

In our first experiment, we evaluate the dynamic web page construction times under

normal loading conditions. Here, both the fragment cacheability level and the page

prediction accuracy are set to MEDIUM (50 percent), and the cache memory is equally

partitioned between the page cache and the fragment cache. For this scenario, Figure 4.3

gives the relative performance of the four dynamic webpage construction algorithms as
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Figure 4.3: Page Construction Times : Normal Load

a function of the session arrival rate. We see here that:

• The HYBRID approach performs the best across the entire normal loading range.

Further, it requires less than half the time to construct pages as compared to

fragment caching, the policy that has been advocated in recent literature.

• The utility of caching and page pre-generation are indicated by the significant im-

provement in performance that are provided by HYBRID, Pure PG and Pure FC,

as compared to No FC PG which is completely impervious to caching/page pre-

generation.

• While the performance of HYBRID, Pure FC and No FC PG is flat across the

loading range, the Pure PG approach begins to progressively do worse as the load

is increased. This is because of the extra load that is imposed by the pre-generation

process. In contrast, HYBRID, while also incorporating page pre-generation, does

not suffer from the problem because of its fragment caching component.

• Our experimental results follow our analytical results closely, derived in Section 4.3.
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4.5.2 Experiment 2: Peak Load Performance

We now evaluate the performance under transient peak load situations which all web-

servers experience from time to time. For this experiment, we present the performance of

the HYBRID and Pure PG approaches, both with and without the feedback mechanism,

to evaluate the effectiveness of this mechanism. The page construction performance for

this experiment is shown in Figure 4.4. We see here that:

• The HYBRID-with-feedback approach performs the best across the entire loading

range. As the load moves into the peak-loading region, this approach progressively

reduces the role of page pre-generation, finally winding up eliminating it completely

and becoming identical to Pure FC.

• The benefits of feedback are clearly shown by comparing the with-feedback and

without-feedback versions of HYBRID and Pure PG.

4.5.3 Experiment 3: Cache Partitioning

We now investigate the performance impact on HYBRID of different cache partitionings

– this is done over the entire range of fragment cacheability levels (Low,Medium and
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High) and page prediction accuracies (Low, Medium and High), resulting in nine different

combinations. The results for all these combinations are shown in Figures 4.5 through

4.7, where we observe the following:

• All of them have a “cup shape” with the highest construction times being at the

extremes (0% page cache and 100% page cache), and the lowest somewhere in

between.

• For the LOW prediction scenario (Figure 4.5), the best overall partitioning is

about 40 percent page cache, while for the MEDIUM page prediction scenario

(Figure 4.6), the best partitioning is 50 percent page cache and for the HIGH page

prediction scenario (Figure 4.7), the best partitioning is 60 percent page cache.

• While the best partitionings are a function of the prediction accuracy as mentioned

above, using a value of 50 percent page cache is very close to the best in all the

graphs. That is, with this setting we are assured almost-optimal performance across

the entire range of web-server scenarios.

• Note that the setting of 0 percent page cache is equivalent to a Pure FC approach.

We observe that the performance of Pure FC is strongly dependent on the fragment

cacheability level.

4.6 Conclusions

In this chapter, we have proposed a hybrid caching approach to reduce dynamic web-

page construction times by integrating fragment caching with anticipatory page pre-

generation, utilizing the spare capacity with which web servers are typically provisioned.

Through the use of a simple linear feedback mechanism, we ensure that the peak load

performance is no worse than that of pure fragment caching.

We made a detailed study of the hybrid approach over a range of cacheability levels

and prediction accuracies, for a given cache budget. Our experimental results show that

an even 50-50 partitioning between the page cache and the fragment cache works very
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well across all environments. With this partitioning, we are able to achieve over fifty

percent reduction in server latencies as compared to fragment caching. In summary,

our approach achieves both the long-term benefit through fragment caching and the

immediate benefit through anticipatory page pre-generation.

Currently, we restrict the pre-generation to the single most likely page. It would be

interesting to investigate the performance effects of pre-generating a set of pages, rather

than just a single page.



Chapter 5

Integrated Caching

5.1 Overview

In this chapter, we propose another server-side caching approach, by integrating two

caching techniques – fragment-caching [19, 20] and code-caching [39]. The experimental

results from a detailed simulation study of our techniques indicate that, given a fixed

cache budget, the proposed integrated caching performs significantly better than the

caching techniques in isolation. We also consider augmenting integrated caching with

anticipatory page pre-generation in order to deliver dynamic web-pages faster during

normal operating situations, by utilizing the excess capacity with which web-servers are

typically provisioned [59]. The work presented in this chapter refers to a server-side

caching, shown as Integrated Caching in Figure 1.4, in Section 1.4.

In summary, we investigate in this chapter the possibility of achieving significant

reductions in server latencies, and thereby user response times, by a combination of

fragment-caching and code-caching, optionally augmented with anticipatory page pre-

generation.

Our approach ensures the freshness of content through either fresh fragment com-

putation or by accessing fragments from the fragment cache, and the correctness of the

page contents by newly generating the page skeleton each time the dynamic web-page

84
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is requested. Overall, our goal is to achieve the long-term benefits through the inte-

grated fragment and code-caching, and the immediate benefit through anticipatory page

pre-generation.

Using a detailed simulation model of a dynamic web-server, we study the performance

of our integrated caching approach in terms of reducing dynamic web-page construction

times, as compared to pure fragment-caching and pure code-caching approaches. Our

evaluation is conducted over a range of fragment-caching levels for a given cache budget.

The results show that the integrated caching approach is able to achieve significantly

better reductions in server latency as compared to pure fragment-caching and pure code-

caching approaches. Our experimental results also show that a hybrid technique of

integrated caching and anticipatory page pre-generation, reduces response times even

further during normal loading, and does no worse during peak loading if augmented

with a load-thresholding feedback mechanism.

Contributions

In summary, the contributions of this chapter are the following:

1. We propose an integrated fragment-cum-code-caching approach to reduce dynamic

web-page construction times. Our experimental results show that significant im-

provements in page generation times can be achieved through this integrated ap-

proach as compared to pure fragment caching and pure code-caching approaches.

2. We demonstrate that, given a fixed cache budget, robust settings exist for the

relative sizing of the cache partitions for fragments and compiled codes.

3. We extend the integrated fragment-cum-code-caching with anticipatory page pre-

generation. Our experimental results show that significant improvements in re-

sponse times can be achieved during normal loading through this process. The

feedback process ensures that no adverse affects are caused during sporadic heavy

load situations.
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The remainder of this chapter is organized as follows: In Section 5.2, we discuss the inte-

grated fragment and code-caching technique. The incorporation of page pre-generation

along with a load-thresholding feedback system is discussed in Section 5.3. Section 5.4

describes an analytical model. The simulation model to evaluate the various alterna-

tives is described in Section 5.5. The experimental results are highlighted in Section 5.6.

Finally, in Section 5.7, we summarize our contributions and outline future research av-

enues.

5.2 Integrated Fragment and Code Caching

In this section, we describe in detail our proposed integrated caching architecture. An

associated problem is cache partitioning between fragment cache and code cache. We

study this problem by varying code cache size. Our proposed integrated caching model is

a simple combination of fragment-caching and code-caching. A high level representation

of the proposed integrated caching architecture is given in in Figure 5.1.

Here, a request for a dynamic page triggers the execution of the corresponding script.

While executing the script, for all those fragments of the script for which the outputs are
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already available in the fragment cache, the execution of the fragment is bypassed, and

we save on the fragment execution time. For those fragments for which the outputs are

currently not available in the fragment cache, or the output is invalid, or the fragment

is not cacheable, the fragment code must be executed from scratch.

While executing the fragment code, the web-server must first interpret and compile

the fragment script and then execute it. In our proposed integrated caching approach,

we cache the compiled fragment code in the code cache, so that any future request for

the execution of the same fragment code will save on the compilation overheads, if the

compiled fragment code is still available in the cache.

In principle, it is possible to cache both the output and the code of a cacheable

fragment, but this appears to be an overkill since if the output is long-lived, then its

associated code will be accessed only rarely. Therefore, it appears better to cache only

the codes of uncacheable fragments, since these are the codes that will be frequently

utilized.

It is important to note that the above solution is guaranteed to serve fresh content,

since it is associated with the origin server. Moreover, it also ensures serving correct

pages, since the page is specific to the user request. From a broad perspective, by

integrated caching we are achieving the long-term benefits whenever the fragments or

their associated compiled codes are reused in course of time.

5.2.1 Server Cache Management

In a pure fragment-caching approach, the server cache is used solely for hosting fragments.

Similarly, in a pure code caching approach, the server cache can be used solely for hosting

compiled codes. However, in our integrated caching approach, we need to allocate cache

space for hosting both fragments and compiled codes. Therefore, we partition the cache

into a fragment cache and a code cache.
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Cache Partition Sizing

An immediate issue that arises here is determining the relative sizes of the fragment cache

and the code cache partitions. This issue is investigated in detail in our experimental

study presented in Section 5.6 – our results there indicate that the size of the code-cache

must be in accordance with Equation 5.3, given in Section 5.6.3. Which signifies that

the size of the code cache must be related to cacheability in such a way that if the

cacheability is high, the cache space given to code cache must be less, otherwise the

cache space given to the code cache must be high.

Cache Replacement Policies

With regard to the fragment cache, we are not aware of any web logs that are available

to track the reference patterns for fragment access. This restricts us to the use of simple

techniques like Least Recently Used (LRU) for managing the fragment cache. A similar

technique can be applied to code-caching as well.

An association between the fragments in the fragment cache and the data in the

origin server is maintained. Whenever a fragment is invalidated, it is marked invalid in

the fragment cache, so that the further use of such a fragment is avoided.

In general, no such association is required for the compiled codes cached in the code

cache since their source scripts rarely change, and further, these changes are usually made

manually, in which case, the system administrator can forcibly flush the code-cache. But

in an environment where script changes are frequent and automatically done, a similar

association between scripts and their cached code fragments can be maintained. To the

best of our knowledge, we are not aware of any web server where script changes are done

automatically.

5.3 Augmentation with Page Pre-generation

As mentioned in the Introduction Chapter 1, caching helps to reduce page construction

time after a request has been received, that is, post-facto. However, if it were possible to
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anticipate a forthcoming request and have the page generated apriori, then the response

would be instantaneous.

Here, we assume the use of a path-based prediction model, described in Section 2.4.

Specifically, for an outgoing user response at the web-server, the web-server decides to

generate the most expected next page for the user, based on many considerations such

as current system load, the type of user, the benefit of pre-generating a page and so

on. When the web server receives the next page request from the same user, it checks

whether it has pre-generated the page the user is requesting now. If so, the page is served

immediately. If not, the page request is treated as a normal page request and the page

is constructed freshly and served.

5.3.1 Server Load Management

While page pre-generation is useful for reducing response times, it also involves expense

of computational resources. This is acceptable under normal operating conditions, even if

the page prediction accuracy is not good, since web-servers are typically over-provisioned

in order to be able to handle peak load conditions [59], and we are only using this excess

capacity. But, when the system is under peak load conditions, the wasted resources

due to the mistakes made by the pre-generation process may actually exacerbate the

situation, driving the system into a worse condition. To address this issue, a simple

linear feedback mechanism that modulates the pre-generation process to suit the current

loading condition is implemented in [65]. We use this technique in the work reported

here also.

5.4 Analytical Results

The benefit that we expect in our integrated caching architecture is reduced dynamic web

page construction time. In this section, we analyze this benefit. Table 5.1 contains the

notations used in this section.

In our analysis, we wish to compare the the dynamic web page construction times
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Table 5.1: Notations for Analytical Results in Integrated Caching

Symbol Description

ε= {e1, e2, ...., em} set of fragments
C= {c1, c2, ...., cn} set of pages
Ei= {ej : ejǫci} set of fragments corresponding to page ci

sej
average size of fragment ej (bytes)

WQ average waiting time in queue

for three cases: (a) with only fragment caching in place; (b) with only code caching in

place; or, (c) integration of fragment caching with code caching.

We next describe our assumptions and derive a generic expression for the average

time taken to generate a dynamic web page by a given web site infrastructure, when no

optimization is in place. We then derive specific expressions for each of the three cases.

Recall from our discussion in Section 2.2 that a dynamic script generates pages. For

the purposes of this analysis, we model a given web application as a set of such pages C

= {c1, c2, ..., cn}. Each page is created by running a script (as described in Section 3.1.3),

and the resulting page consists of a set of fragments, drawn from the set of all possible

fragments, ε= {e1, e2, ..., em}. We let Ei, Ei ⊆ ε, be the set of fragments corresponding

to page ci.

As described in Section 4.3, we characterize our system as a M/M/k queue. For

average waiting time (WQ) of a page request in the web-server queue, we use the Equa-

tion 4.1.

Algorithms

To put the performance of our new Integrated approach in proper perspective, we com-

pare it against two benchmark algorithms, Pure FC, which implements pure fragment-

caching on the entire cache, and Pure CC, which implements pure code-caching on the

entire cache, respectively. In the initial set of experiments, page pre-generation is not

included, but is considered subsequently.

We define T Pure FC as the average time taken by the website when only fragment
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caching is used, T Pure CC as the average time taken by the website when only code caching

is used, and T Integrated as the average time taken by the website when both fragment

caching and code caching used, i.e., in our proposed integrated caching architecture.

We proceed to derive expressions for the above three cases. In the case where only

fragment caching is used, the expression is given by the Equation 4.3.

We now obtain the expression for the case where only code caching is used. In this

case,

T Pure CC = WQ + (Σtei
)/reduction-factor (5.1)

where reduction-factor is the execution reduction due to code caching used.

We now obtain the expression for our proposed integrated cache, where both fragment

caching and code caching are used. In this case,

T Integrated = WQ + (n
′

× cst) + ((1 − n
′

) × Σtei
)/reduction-factor (5.2)

Table 5.2: Baseline Parameter settings for Analysis (Integrated Caching)

Parameter Value

average fragment size (se) 2Kbytes
average number of fragments per page 9
average page size (se) 20Kbytes
cacheability 50%
code reduction-factor 2
page predictability 50%
number of application servers 4
average fragment generation time 20ms

We have compared the expected time taken for three cases using the baseline param-

eter values shown in Table 5.2, the basis for parameter values is described in Section 4.4.

It is very difficult to obtain exact time of a fragment computation, since it depends

upon various factors, like the the time of computation, the load on the system, and so

on. Hence we assume an average value [This is not a problem in our analysis, since we

compare only the relative performance]. The analytical results are shown in Figure 5.2,
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Figure 5.2: Analytical results: Integrated Caching

which gives the relative performance of the three dynamic webpage construction algo-

rithms. We see here that the Integrated approach (labeled as Integrated in the figure)

performs the best compared to all others and further, it performs 30% better than frag-

ment caching (labeled as Pure FC in the figure), the policy that has been advocated in

the recent literature.

The foregoing results indicate that the integrated caching is indeed beneficial in terms

of reducing the dynamic web page construction time, during both normal loading and

peak loading.

5.5 Simulation Model

To evaluate the performance of the proposed integrated caching system, we have devel-

oped a detailed discrete-event simulator of a web-server supplying dynamic web-pages

to users – this model is similar to that used in [65], and is extended to incorporate the

code-caching feature. Table 5.3 gives the default values of the parameters used in our

simulator – these values are chosen to be indicative of typical current websites, with
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some degree of scaling to ensure manageable simulation run-times. Some of the param-

eter values setting is described in Section 4.4. Here also, we use as the same Web-site

Model and User Model described in Section 4.4.1 and Section 4.4.3 respectively.

5.5.1 Web-page Model

Each dynamic web-page consists of a static part and a collection of identifiable dynamic

fragments. A fraction FragCacheable of these dynamic fragments are cacheable, while

the remaining are not. The number of fragments in a page are uniformly distributed

over the range (MinFragNum,MaxFragNum). Two distributions of the choice of frag-

ments are considered: Uniform, where the fragments are selected uniformly from the

FragPopulation fragments, and Skewed, where a “90-10” rule applies in that 90 percent

of the fragment choices are made from 10 percent of the FragPopulation fragments. Fi-

nally, the cost of producing a fragment is taken to be exponentially distributed with

mean time for fragment generation given by FragCost.

The fragment source code sizes are between MinimumSourceSize and

MaximumSourceSize. When the fragment source code is compiled, the size of the

compiled code is usually larger as compared to the equivalent source code size – this

increase is modeled by the factor CodeBlowupFactor, and the value chosen is based

on our analysis of a representative set of real-world scripts. The minimum execution

speedup due to pre-compilation is given by ReductionFactor – the value chosen is based

on a conservative estimate of the speedups mentioned in [39]. Some of the parameter

values chosen are conservative based on [22, 56].

Finally, the accuracy of page access prediction, used in the page pre-generation pro-

cess, is determined by the PagePredict parameter. The load-controlling feedback mecha-

nism kicks in when the current load exceeds the setting of the ThresholdLoad parameter.
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5.5.2 Cache Model

The web-server has a cache for dynamic page construction, of size CacheSize. The

fraction of the cache given to the Code Cache is given by CodeCacheFraction, with the

remainder assigned to the fragment-cum-page cache. Within the fragment-cum-page

cache, the space is equally divided between the fragments and pages, as per [65]. The

search times in the code cache and fragment-cum-page cache are determined by the

CacheSearchTime parameter. The fragments in the fragment cache are modeled to be

invalidated randomly by the data source with an invalidation rate set by InvalidRate.

5.6 Experiments and Results

Using the above simulation model, we conducted a variety of experiments, the highlights

of which are described here. The performance metric used in all our experiments is the

average dynamic page construction time, evaluated for a range of fragment cacheabilities

as a function of the session arrival rate and the fraction of the cache assigned to the

code cache. The fragment cacheability and page prediction accuracy are evaluated for

the following settings: LOW (20%), MEDIUM (50%) and HIGH (80%), covering

the spectrum of real-life website environments. Also, the user arrival rates cover both

normal loading conditions as well as peak load scenarios. The simulator was written in

C++SIM [8], an object-oriented simulation testbed. The experiments were conducted

on Ultra-Sparc/Solaris 2.6 workstations.

5.6.1 Experiment 1: Page Construction Times (Uniform)

In our first experiment, we evaluate the dynamic web-page construction times for an

environment where the fragment cacheability is Medium (50 percent), the cache memory

is equally partitioned between the code cache and the fragment cache (and no page

pre-generation), and the fragment distribution is Uniform.

For this scenario, Figure 5.3 gives the relative performance of the various algorithms

as a function of the session arrival rate. We see here first that the Integrated approach
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Table 5.3: Simulation Parameter settings (Integrated Caching)

Parameter Setting
FanOut 10
BackLinks 20 percent
FragPopulation 8000
CacheSize 2 MB
CodeCacheFraction 0 to 100 percent
FragCost 20 ms
MinPageSize 10 KB
MaxPageSize 30 KB
MinFragNum 1
MaxFragNum 19
MinFragSize 1 KB
MaxFragSize 3 KB
ArrivalRate 0 to 12 sessions per second
InvalidRate 1/ms
MinSessionPage 1
MaxSessionPage 19
MinThinkTime 1 second
MaxThinkTime 9 seconds
FragCacheable 20, 50, 80 percent
CacheSearchTime 0.1 ms
NumberofPagesUsed 2074
MinimumSourceSize 100 bytes
MaximumSourceSize 300 bytes
CodeBlowupFactor 10
ReductionFactor 2
ThreshholdLoad 75 percent
PagePredict 20, 50, 80 percent
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Figure 5.3: Page Construction Times (Uniform)

performs about 20% better than Pure CC and 30% better than Pure FC. Further, it

can sustain performance stability for a higher arrival rate (upto 6 sessions per second) as

compared to both Pure CC and Pure FC. Our experimental results follow our analytical

results closely, derived in Section 5.4.

5.6.2 Experiment 2: Page Construction Times (Skewed)

When the above experiment is carried out with a Skewed fragment distribution, the

resulting performance is as shown in Figure 5.4. We see here that the performance

differences between Integrated and the baselines substantially increase – now, Integrated

is 40 percent better than Pure CC and 60 percent better compared to Pure FC. In most

real-world situations, fragment choices are indeed skewed, highlighting the importance

of the Integrated approach to dynamic page construction.

Further, the Integrated algorithm is flatter for a longer time and sustains performance

stability for much higher arrival rates (upto 12 sessions per second) as compared to both

Pure CC (6 sessions per second) and Pure FC (4 sessions per second).



Chapter 5. Integrated Caching 97

0

50

100

150

200

0 2 4 6 8 10 12

P
a

g
e

_
c
o

n
s
tr

u
c
ti
o

n
_

ti
m

e
(i
n

 m
s
)-

->

Session Arrival Rate -->

"Pure_FC"
"Pure_CC"

"Integrated"

Figure 5.4: Page Construction Times (Skewed)

5.6.3 Experiment 3: Cache Partitioning (Uniform)

In our next experiment, we investigated the performance impact on the Integrated ap-

proach of various choices of cache partitioning sizes between the code cache and the

fragment cache. This is done over the entire range of fragment-cacheability levels (Low,

Medium and High), resulting in three different cases. The results for all these cases are

shown in Figures 5.5(a-c) for arrival rates 1 through 4, as a function of the code-cache

percentage size, and for a Uniform fragment distribution.

In these figures, we first observe that all the Integrated graphs have a “cup shape”

with the highest construction times being at the extremes (0 percent code-cache and

100 percent code-cache), and the lowest somewhere in between. Further, we find that

a simple heuristic relationship exists between the best partition, which leads to lowest

page construction time, and the fragment-cacheability:

BestPartition = 100 − Fragment cacheability (5.3)

So, for example, with High (80%) fragment-cacheability, the Best Partition occurs at

about 20% for the code-cache. In all our other experiments also, we found this heuristic
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to approximately hold true.

An important point to note here is that the setting of 0 percent code-cache is equiv-

alent to a Pure FC approach, while 100 percent code-cache is equivalent to Pure CC.

We observe in the graphs that the performance of both Pure FC and Pure CC are very

highly variable with regard to the fragment-cacheability level.

5.6.4 Experiment 4: Cache Partitioning (Skewed)

When the above experiment was carried out with a Skewed fragment distribution, the

resulting performance is as shown in Figures 5.6(a-c). We see here that the cup shapes

are much deeper as compared to the Uniform case, indicating that choosing the Best

Partition appropriately becomes even more critical. But this is not difficult since the

choice continues to be in accordance with Equation 5.3.

5.6.5 Experiment 5: Page Pre-generation (Uniform)

We now move on to investigating the impact of the optional page pre-generation on

dynamic page construction times. In our first experiment here, the caching algorithms

are augmented with page pre-generation for 50 percent page predictability, the rest of

the parameters remaining the same as that of Experiment 1 (as mentioned earlier, the

internal partitioning of the fragment-cum-page cache is always equally split between

fragments and pages, as per [65]).

For this environment, the page construction times are shown in Figure 5.7 – for

graph readability, we only show the performance of the basic Integrated algorithm and

its PG (page pre-generation) variation. We first see here that PG Integrated performs

upto 30 percent better than basic Integrated during normal loading (upto 2 user sessions

per second), and no worse during peak loading (by virtue of the feedback-based load-

control mechanism). In a nutshell, PG Integrated provides both excellent average-case

performance and stable worst-case performance.
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5.6.6 Experiment 6: Page Pre-generation (Skewed)

When the above experiment was carried out with a Skewed fragment distribution, the

resulting performance is as shown in Figure 5.8. We see here that the performance is

improved only marginally (by about 10 percent at the low loads). This is because when

the fragment distribution is skewed, then most of the frequent fragments are either served

from the fragment cache or executed directly from the code cache and they are the ones

which are frequently requested. So there is little work remaining, even when the page is

constructed after receiving the request. Hence the impact of the page pre-generator is

marginal in this case.

5.6.7 Experiment 7: Integrated Caching with Page Pre-generation

: Cache Partitioning (Uniform)

In our next experiment, we investigated the performance impact on the Integrated ap-

proach of various choices of cache partitioning sizes between the code cache and the

fragment cache augmented with anticipatory page pre-generation. This is done over the

entire range of fragment-cacheability levels (Low, Medium and High), resulting in three

different cases. The results for all these cases are shown in Figures 5.9(a-c) for arrival
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Figure 5.8: Impact of Page Pre-generation (Skewed)

rates 0.25, 0.5 0.75, 1 through 4, as a function of the code-cache percentage size, and

for a Uniform fragment distribution. Here we consider very low arrival rate also, since

at high arrival rate the page pre-generation becomes effectively off by the nature of the

load-controlled feedback mechanism.

In these figures, we first observe that all the Integrated graphs have a “cup shape”

with the highest construction times being at the extremes (0 percent code-cache and 100

percent code-cache), and the lowest somewhere in between. Further, we find that the

simple heuristic relationship suggested in Equation 5.3 holds here also. Here, we also

observe two bands of cups, the lower band corresponds to low arrival rates, in which

Page pre-generation on and the upper band corresponds to high arrival rates, in which

Page pre-generation is turned off.

5.6.8 Experiment 8: Integrated Caching with Page Pre-generation

: Cache Partitioning (skewed)

When the above experiment was carried out with a Skewed fragment distribution, the

resulting performance is as shown in Figures 5.10(a-c). We see here also similar results

and the choice continues to be in accordance with Equation 5.3. Here also, we observe
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two bands of cups as in the previous case.

5.6.9 Summary

As described above, we have carried out a variety of experiments on proposed Integrated

caching both with and without page pre-generation. To summarize our experimental

results, we observe that the Integrated caching (without page pre-generation) performs

20 percent better than Pure CC (the code caching) and 30 percent better than Pure FC

(the fragment caching), under Uniform fragment distribution. Under Skewed fragment

distribution, it performs 40 percent better than Pure CC and 60 percent better than

Pure FC.

The extended Integrated caching with page pre-generation (with feedback mecha-

nism) performs better than the Integrated caching during normal loading and dose no

worse during peak loading. We observe that during normal loading speedups of 10 to 30

percent can be realized, depending on fragment distribution.

5.7 Conclusions

In this chapter, we have proposed a simple integrated caching approach to reduce dy-

namic web-page construction times by appropriately combining both fragment-caching

and code-caching. We made a detailed evaluation of the integrated caching approach

over a range of cacheability levels and fragment choice distributions. Our experimen-

tal results showed that the integrated approach can provide significant reductions in

construction times, especially for skewed fragment distributions. We were also able to

identify a simple heuristic for identifying the appropriate size of the code cache partition.

We extended our integrated caching model to incorporate anticipatory page pre-

generation. The results of this integration with feedback mechanism show that the

extended approach performs significantly better during normal loading and does no worse

during peak loading.
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In summary, our approach achieves long-term benefits through fragment and code-

caching and immediate benefits through page pre-generation. Currently, our work uses a

LRU-based cache replacement policy. If web logs for fragment access become available,

then it will be interesting to study the performance of customized cache-replacement

policies.



Chapter 6

Conclusions and Future Research

Avenues

6.1 Conclusions

In this thesis, we have proposed caching solutions They are broadly classified as proxy-

side caching and server-side caching solutions. Under proxy-side caching, we have pro-

posed Dynamic Proxy Caching. Under server-side caching, we have proposed Hybrid

Caching, and Integrated Caching.

We have carried out a performance analysis of integrating various techniques to reduce

bandwidth consumption and dynamic page construction times, by resorting to integra-

tion of fragment-caching with other techniques. A survey of existing techniques shows

that many individual techniques are good in their own context, but we have shown in

our results that an integration of these techniques performs significantly better when

compared to the techniques in isolation.

First, we implemented a proxy-based dynamic content accelerator, which combines

the best features of fragment-caching and proxy-caching, with the intention of reducing

bandwidth requirement. With this, we could reduce the size of dynamic responses,

leading to less bandwidth consumption and associated delays, like firewall and routing.

107
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Next, we have proposed a hybrid caching architecture. Here, we simulated a server-

side caching solution by integrating fragment-caching and anticipatory page pre-generation

to reduce dynamic page construction times, during normal loading, by utilizing the ex-

cess capacity with which websites are typically provisioned to handle peak loads. We did

an analysis under a fixed cache budget and shown through our simulation results that

dynamic page construction times can be reduced by more than fifty percent. And further

we have shown that the cache partition in the ratio 50:50 between fragment-cache and

page-cache works reasonably well across different cacheability levels and page prediction

accuracies.

Finally, we have proposed an integrated caching architecture. In this we simulated a

server-side caching solution by integrating fragment-caching and code-caching, optionally

augmented with page pre-generation. Through experiments, we have shown that pro-

posed integrated caching performs significantly better than the individual components.

We also arrived at a simple heuristic to partition the cache between the fragment-cache

and the code-cache. We further extended the integrated caching architecture by option-

ally augmenting with anticipatory page pre-generation and showed that the results are

significantly better during normal loading and no worse during peak loading.

In summary, we have presented in this thesis a performance analysis of integration of

various solutions to reduce both network bandwidth consumption and page construction

times of dynamic web pages, by resorting to integration of fragment-caching with various

other solutions. In short, this thesis has addressed performance and scalability issues of

dynamic websites.

6.2 Future Research Avenues

The work presented in this thesis can be extended in a number of ways, some of which

are listed here:

1. Predicting a set of pages: Currently in our hybrid caching model, we restrict

the page pre-generation to the single most likely page. In our future work, we plan
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to investigate the performance effects of pre-generating a set of pages, rather than

just a single page, in our hybrid caching model.

2. Creating and studying web logs for fragments: In order to effectively manage

a web server, it is necessary to get feedback about the activity and performance of

the server as well as any problems that may be occurring. The current web servers

provide web logs at the page access level. The server access log records all requests

processed by the server. But, to best of our knowledge, there are no web logs for

fragment accesses. The creation of web logs for fragment access may be useful for

various studies.

3. Deploying in a real system: Both fragment-caching and code-caching are avail-

able only in the form of proprietary software. Given public domain software for

fragment-caching and code-caching, we can deploy our proposed hybrid caching

and integrated caching and study their performance in real systems.

4. Study of fragment distribution: Since there is a lack of web logs for fragment

accesses, we were restricted to cache replacement polices like LRU. If fragment

access logs become available, their study may reveal many interesting phenomena

and suggest better cache replacement policies, etc.

5. Handling dynamic proxy caching failures: In the proposed dynamic proxy

caching, it is assumed that the DPC never fails. But, in practice, it may not be

the case. If there is a failure in the DPC, the back-end monitor (BEM) may not

be aware of this event. So, the site may become unavailable due to DPC failure.

It is interesting to investigate the solutions for DPC failures.

6. Security of dynamic contents at DPC: In the proposed DPC, the dynamic

contents should be protected. Methods to deal with the protection of dynamic

contents cached at DPC have to be evolved.
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