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Abstract

Generating synthetic databases for testing database applications, which can simulate the client’s

side data warehouse as close as desirable, is a common requirement from database vendors as

it helps to replicate the query processing environment. Hydra[7] generates synthetic data that

is volumetrically similar to the real database with respect to an apriori given query workload.

That is, assuming a common choice of query execution plans at the client and vendor sites, the

output row cardinalities of individual operators in these plans are very similar in the original

and synthetic databases. However, there are several potential (synthetic) databases, all of which

satisfy these volumetric constraints. This work tries to capture another statistical property in

addition to volumetric similarity. That is, the techniques proposed here generates a synthetic

database that not only satisfies volumetric constraints but also matches the per-attribute du-

plication frequency distribution, which can lead to better analysis database engine performance

on client’s environment.

In this thesis, the term duplication distribution is introduced to define the distribution of

duplicate values in the data. We present DupGen, a dynamic data generator that incorporates

duplication distribution of data with volumetric similarity on generated synthetic data. DupGen

achieves the exact similar duplication distribution for attributes of base relation and with some

error on filter predicates applied on the base relation and in addition to that also ensures

volumetric similarity at both base and intermediate nodes.
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Chapter 1

Introduction

Testing Enterprise Database Systems, which requires (a) rectifying bugs that surface,

and (b) pre-assessing the impact of planned engine upgrades, on customer deployments

continues to be a challenging problem. This is attributed to the unavailability of the

client’s data at the vendor-site. Therefore, database vendors often resort to generating

synthetic databases that mimic, for the intended purposes, the behavior of the client data

processing environments.

1.1 Related Works and Limitations

Data generation are of primarily two types, workload independent and workload dependent data

generation. We are dealing with the class of workload dependent data generation, which takes

schema information and query workload from client to generate synthetic data that adheres

some property of client’s database. Over the last decade, several client-centric data generators

have been proposed, like MyBenchmark [14], DataSynth[11] and Hydra [7]. These tools focus on

generating synthetic data that exhibits volumetrically similar behavior to the original database

on the customer query workload. That is, for a query, the output row cardinalities of individual

operators in the corresponding query plans are almost identical in original and synthetic data.

For example, consider the following toy database with the following relations:

Employee(empNo,salary,companyID)

Company(companyID,cname)

On this schema, a simple SQL query is shown below:

SELECT * FROM Employee E,Company C

WHERE C.companyID=E.companyID
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On executing this query on the original database residing in one of the well known commer-

cial database, the query plan produced is as shown in Figure 1.1. Notice that the plan shows

the input/output row cardinality corresponding to each operator in the plan tree. For achieving

volumetric similarity, these cardinalities should be close for original and synthetic databases.

Figure 1.1: Query plan for above query

Limitation. While volumetric similarity captures an important data characteristic necessary

for mimicking the client data processing environment, it lacks a very critical aspect of the

data distribution and one kind of distribution is the duplication distribution. To illustrate

this, we constructed two data sets D1 and D2, for our example schema, which differ only in

the Employee.companyID column. Note that Employee.companyID is a foreign key column

- that is, it takes values from the corresponding reference table Company. Therefore, values

in Employee.companyID is a subset of Company.companyID. The difference in this column is

specfied below:

D1: Employee.companyID has a uniform distribution over all the values present in

Company.companyID.

D2: Employee.companyID has all identical values.

Both the datasets have 655 million and 82 million rows in Employee and Company table

respectively. The example query, when run on these two data sets give identical physical query

plans with same row cardinalities. However, in spite of satisfying volumetric similarity, they

have significantly different running times, as shown in Table 1.1. As we can see for D1 the time

was 18 minutes which increased to 28 minutes for D2. Note that these times were computed on

identical hardware, database platform (a popular commercial engine) and system configuration.

As per our judgement, the primary source of the time difference is the spilling behavior that
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happens while computing the hash table, which is used for performing join operation. The

spilling mechanism depends heavily on the duplication distribution of the data. Hence, our

focus is on capturing the duplication distribution in the synthetic data.

Distribution Type Running Time

D1 18 min

D2 28 min

Table 1.1: Query Execution Time

1.2 Our Contribution

Motivated from the above observation, we propose DupGen , a new data regenerator that aims

at mimicking the duplication behaviour in the synthetic database. Our primary contributions

are as follows:

Duplication Distribution Expression : A duplication distribution, for a set of attributes

A, is expressed as a 2-D vector that stores the information of how many value combi-

nations corresponding to A occur with a certain frequency. For example, Given array a

=[4,2,3,1,4], the duplication distribution will be {(2, 1), (1, 3)} as only 4 is repeating two

times and 1,2 and 3 (three elements) occurs only single time. Similarly, (d, f) vectors for

D1 is {(8, 82 million)} as all 82 million values were uniformly distributed and for D2 is

{(655 million, 1)}, since all values are identical.

Note that duplication distribution already encapsulates the total row-cardinality informa-

tion. Therefore, ensuring matching duplication distribution implies volumetric similarity

as well.

Further, we also propose a measurement, called duplication-error (Se), for comparing the

duplication distribution of two different data sets for a set of attributes.

Duplication Distribution Computation: All the database platforms give the information

of input/output row cardinality for each operator in the query execution plan. However,

the duplication distribution information is not provided explicitly. Therefore, to compute

it, we use either (a) a non-invasive offline algorithm, where for each operator in the plan

tree, a corresponding SQL query is constructed that returns the required duplication

distribution at that operator, or (b) an invasive online algorithm, which computes the

duplication distribution for each operator during the query execution itself. We have
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implemented this approach for open-source PostgreSQLv9.6 [6] database engine. Further,

to make the computation efficient, we also have an approximation variant of the algorithm

that gives approximate duplication distribution without having serious overheads on the

query execution time.

Duplication Distribution Mimicking: Given the duplication distribution at each operator

in the plan tree, DupGen aims to generate a synthetic database that also exhibits similar

duplication behavior. Our current work is limited to ensuring duplication behavior at the

various level of nodes of query plan tree. For getting duplication distribution, we could

have used metadata, but since we need duplication distribution at all level of query plan

tree and also ensuring duplication distribution at base nodes doesn’t ensure duplication

distribution at intermediate nodes. Also, metadata information doesn’t provide the exact

duplication distribution in many cases.

1.3 Organisation

The remainder of this thesis is organized as follows: An overview on duplication distribution

and the distance measure is discussed in chapter 2. Further chapter 3, discussed the algorithm

and implementation details of duplication distribution computation from the client site. The

problem statement is further defined in chapter 4. Following chapter 5 gives the details of the

data generation algorithm that aims towards mimicking duplication behavior. Next, chapter 7

discussed the experimental evaluation, and finally, we conclude with some brief ideas of future

work.
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Chapter 2

Expressing Duplication Distribution

We first formally describe a duplication distribution with respect to a set of attributes. Further,

we also give a measure of computing distance between two duplication distributions.

2.1 Duplication Distribution

A duplication distribution is expressed using a 2D vector {(d, f)}, where d represents the num-

ber of duplicates, and f denotes the number of attribute values having d duplicates. The

duplication distribution in this paper is used interchangeably in terms of duplication vec-

tors. For example see in figure 2.1, where duplication vectors for each attribute is given like

{(d1, f1), (d2, f2), ...(dn, fn)}

Figure 2.1: Duplication distribution on all attributes of given table

Duplication vectors contains cardinality information as well, and can be expressed as

‖v‖ =
∑β(v)

i=1 (di × fi)

where v = {(d1, f1), (d2, f2), ...(dn, fn)} and β(v) is number of (d, f) elements in v.
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Summation of two duplication vector v1 and v2 can be defined as v = v1 + v2, such that

for all common d values, f would be fv1 + fv2, otherwise all (d, f) from both v1 and v2 are

appended to v.

2.2 Bound on size of duplication vectors

For any attribute a in set of attributes A of Relation R,let duplication vector on attribute a be

va, then ‖va‖ = |R|. The length of va is dependent on the size of R. The number of entries in

the distribution is equal to the number of distinct duplication frequencies for values occurring

in attribute a. We express this number as β for a. It is easy to see that β is maximum when

the duplication frequency distribution is of the type: {(1, 1), (2, 1), (3, 1), ..., (aβ, 1)}. This gives

us the following condition:

1(1) + 2(1) + 3(1) + ..., β(1) = |R| (2.1)

This gives us β = O(
√
|R|). Hence even for a trillion rows relation, the duplication frequency

distribution of each attribute can be captured using few MBs of data in the worst case.

2.3 Distance between duplication vectors

For comparing duplication vectors, we need a distance metric, termed duplication distance.

Given two duplication vectors v1 and v2, the duplication distance between v1 and v2 can be

defined as

Sd(v1, v2) = D(av1, av2) =
∑len(av1)

i=1 |av1[i]− av2[i]|

where v1 and v2 are transformed into array of integers av1 and av2, such that both av1 and

av2 are in sorted (descending) order and have same number of elements and D(av1, av2), gives

summation of absolute distance between each corresponding element of av1 and av2. Using

sorted order gives the minimum distance between the duplication vectors proved in Lemma 1.

Transforming duplication vectors For distance calculation between two vectors, the basic

requirement is to have same number of elements. So, to achieve this, first both v1 and v2 are

transformed into array of integers, such that for each (d, f) in duplication vector v, d is added

to array f times. Thus number of element in transformed duplication vector v is

|av| =
∑β(v)

i=1 fi

, where β(v) is size of duplication vector v

6



Since, for vectors v1 and v2, summation of f can be different, thus to have same number of

elements extra 0s are appended to the array having less number of elements. All elements in

transformed array are sorted in descending order.Example of duplication distance calculation

is shown in figure 2.2. Duplication distance is further used by duplication error defined in

Experiment section, which shows how much closer is v1 to v2, by normalizing duplication

distance such that it ranges from 0 to 1.

Figure 2.2: Example of duplication distance calculation

Lemma 2.1 Given two array A and B of same size and distance between A and B is given by

d(A,B) =
∑β(A)

i=1 |A[i] − B[i]|, where size of A and B is β(A)(= β(B)). Then sorted order of

both A and B will give minimum distance than any other order.

Proof: Let A be [a1, a2, ...an] and B be [b1, b2, ...bn], sorted on decreasing order such that

a1 ≥ a2 ≥ ... ≥ an, similarly holding for values in B.

Now WLOG, select 2 random elements from both A and B, for swapping, let from A, p and

q are picked and from B, r and s are picked, such that p ≥ q and r ≥ s. Considering all four

possibility of

1. p ≥ r and q ≥ s

2. p < r and q > s

3. p > r and q < s

4. p ≤ r and q ≤ s

Clearly case 1 is symmetric to case 4, similarly case 2 is symmetric to case 3. Now considering

first case 1, here swapping gives same minimum distance as it is for sorted order, since (p− r)
+ (q− s) = (p− s) + (q− r). Now in case 2, (p− s) ≥ (p− r) and (q− r) ≥ (q− s), using p ≤ q

and r ≤ s, Therefore, (p − r) + (q − s) ≤ (p − s) + (q − r).Similarly, this holds for multiple

7



swap as well. Thus, there are no possibilities of any other order to give minimum distance than

sorted order.

2

2.4 Duplication Error

We have defined duplication error as an error metric to compare the duplication vectors nor-

malizing the duplication distance(Sd) between the vectors by dividing it by twice the number

of tuples(represented by a duplication vector). Let vactual be actual duplication vector for some

relation R and vestimated be estimated duplication vector for R, then

Se(vestimated) = Sd(vactual,vestimated)
2×||vactual||

The reason of dividing from 2, is to have in range between 0 and 1.

Metric bound on duplication error Consider the relation R. We can define duplication

vector for any attribute a in R in exactly two opposite distribution like (|R|, 1) and {(1, |R|)},
where |R| is the number of tuples in R. {(|R|, 1)}, represents the case having all attributes values

same. In contrast, {(1, |R|)}, represents the case where all attribute values are distinct(which

indicates that they are an opposite case of duplication distribution). As shown in figure 2.3, the

duplication distance between these two duplication vector would be 2|R| - 2 and duplication

error would be (1 - 1
|R|), which shows duplication error would always be less than 1. Having

twice in the denominator is a construct that helps to bound duplication error to 1 instead of

2.Similarly, accuracy for estimated duplication vector can be defined as 1 - Se. Also having

accuracy near to 1 means the distribution assigned to synthetic data is very close to actual

and similarly accuracy is near to 0, means generated synthetic data have opposite distribution

from actual(i.e for the actual case {(|R|, 1)}, synthetic data distribution with duplication vector

{(1, |R|)} will be the opposite distribution for the actual case).

8



Figure 2.3: Bound on duplication error

2.5 Subset Property of duplication vectors

Given two duplication vectors v1 and v2, v1 can be subset of v2, iff each (di, fi) of v1 is present

or can be generated using duplication vector v2. For example

Given v1 = {(2, 3)}
and v2 = {(4, 2), (2, 1)}

So, there are three values that have two duplicates in v1 and in the case of v2, there are also

three values, but two of them have two duplicates and one of them is having four duplicates.

Since, we can have 3 values from v2, which have two duplicates, thus, v1 is subset of v2. This

property is further used to formulate linear constraints for intermediate nodes of query plan.

9



Chapter 3

Compute duplication distribution at

client side

Input and output row cardinalities for all operators of query plan are directly available

from the database engine, but duplication distribution information is needed to compute

explicitly. We proposed three approaches to compute duplication distribution for each

operator in query in the query workload.

3.1 Offline Approach

Using the query plan of each query in the query workload to get duplication distribution at all

operators of queries. Getting each operator’s sub-tree query got from the query plan. Applying

GROUP BY with count(*) on a attribute of a relation gives frequency count of each distinct

element in the relation and applying GROUP BY on the top of frequency count result of each

element with count(*) gives duplication distribution for that attribute. Thus an offline version

of decorrelated query can be formulated for each operator as shown in the figure 3.1.

10



Figure 3.1: Duplication distribution using Group By

3.2 Online Approach

In online approach, we monitor the output of each operator while execution of the query and

compute the exact duplication distribution for targeted attributes. We added a frequency

counter(FC1) in the output of each operator to have the frequency count of each element.

Once the FC1 is fully updated(i.e all elements have an entry in FC1) then, another frequency

counter(FC2) on the top of FC1 is applied for having duplication distribution of all attributes

present in operator’s output.

11



Figure 3.2: Online duplication Computation at operator’s output

3.2.1 Exact Online Approach

In exact approach as shown in Figure 3.2(i), we calculate exact duplication distribution, using

both frequency counters FC1 and FC2, where FC1 keeps track of exact frequency count of

elements and FC2 runs on the result of FC1, to get the duplication counts. Since there can be

large amount of data, varying from very high to low frequency. Keeping track of low frequency

elements can result in more space overhead. So to reduce the overheads of small frequency

elements, approximate online approach is introduced.

3.2.2 Approximate Online Approach

In approximate online approach as shown in Figure 3.2(ii), instead of using frequency counter

FC1, we have used Approximate Frequency Counter (AFC). Approximate frequency counter

uses Lossy Counting [9] as an approximation algorithm, to keep tracks of most frequent items

only. Thus using Approximate frequency counter results in less number of elements after first

frequency counting which reduces space overhead and further second frequency counter which

runs over the result of approximate frequency counter, which is quite less in size compare to

the result of frequency counter, thus also results in reducing time overheads. Since second

frequency counter runs on approximate frequency count, it will give approximated duplication

distribution. The elements which does not come in the result of approximate frequency counter

end up as they are repeating only single time, just to have total number of tuples in database

equals to number of tuples by duplication distribution.

12



Chapter 4

Problem Framework

We describe the problem framework for a single relation instance. Each relation in the

database can be dealt with in the same manner. The duplication frequency distribution

is matched at an attribute level so there is no dependency across two attributes within

or across relations. Further, for simplicity, we are currently dealing only with mimicking

duplication distribution of foreign keys of relations, which could further help us to handle

joins between relation in future.

4.1 Problem Statement

Given set of cardinality constraints and duplication distribution(va = {(di, fi)}|i ∈ [β(a)] for

attribute a) of attributes(in our case only foreign keys are considered) in base relation(R),

generate synthetic relation(R′), that have volumetric and duplication distribution, such that it

follows similar duplication distribution for various nodes of query plan tree.

Figure 4.1: Problem Framework
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Chapter 5

Data Generation at Vendor site

After computing duplication distribution at the client side, data generation can be done

with the help of schema, query plan trees on client’s query workload and duplication

distribution data. This section deals with whole data generation process which involves LP

formulation, distribution of duplication information and database summary generation,

which can be used further to generate tuples. We termed our data generation model as

DupGen.

5.1 Overview of DupGen

DupGen takes schema, query plans associated with duplication distribution of attributes anno-

tated with each node of query plan and also duplication distribution of attributes of the base

relations as input.For now only, foreign key attributes are considered for duplication distribu-

tion mimicking. DupGen aims to ensure volumetric similarity at all the intermediate nodes of

query plan tree and in addition to that it matches the duplication distribution of base relations

as well. And in the case of duplication distribution after filters applied on base relation, it tries

to mimic duplication distribution at filter nodes as close as possible to the original duplication

distribution.

The Figure 5.1 shows the end to end pipeline of the DupGen. DupGen mostly works on

top of Hydra [7], with some additional features added in it to ensure mimicking of duplication

distribution. The green shaded blocks are the modules where additional work is done which is

to be discussed below. In LP formulation module, some duplication distribution related linear

constraints are added discussed in section 6. The duplication distribution block is new addition

to the Hydra pipeline which distributes duplication vector after the LP solving stage using

duplication distribution algorithm discussed in section 7. And the data generation blocks deals

with view summary generation and tuple generation discussed in section 8.

14



Figure 5.1: DupGen Pipeline

Currently, we focus on ensuring the duplication distribution of the foreign key columns as

they are integral for join processing, which can be used in future work of handling duplica-

tion distribution with joins. Based on the common assumption of considering queries with only

primary-key foreign-key joins, the constraint at each intermediate node of the query plan can be

treated as a filter condition on a specific view. Using this observation, Hydra[7] generates each

relation independently by first constructing a view corresponding to each relation. The view

comprises the relation’s non-key attributes and is augmented with the borrowed non-key at-

tributes of the relations. It depends on referential constraints (both directly or transitively).Like

Hydra, DupGen also works on view level, which in the future will be helpful to handle joins with

duplication distribution. Also, solving the problem at view level solves the problem at relation

level inherently; that is, our actual problem statement. Consider an example, given two re-

lation COMPANY (companyID, stocks) and EMPLOY EE(empId, salary, companyID), in

which EMPLOY EE references from COMPANY using companyID then COMPANY VIEW

and EMPLOYEE VIEW and will be generated, and stocks is borrowed attribute in EM-

PLOYEE VIEW from COMPANY associated with foreign key companyID.

COMPANY VIEW(stocks)

EMPLOYEE VIEW(salary,stocks)

Since view comprises of non-key attributes only, therefore both COMPANY V IEW and

EMPLOY EE V IEW have only non-key attributes. Further given below are some example

cardinality constraints applied on COMPANY and EMPLOY EE relation:

| σsalary>50K(EMPLOY EE) |= 16520;

| σsalary>50K∧stocks>2000(COMPANY ./ EMPLOY EE) |= 8000
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Above cardinality constraints can be expressed in form of constraints applied on views such

that it involves borrowed non-key attributes, as :

| σsalary>50K(EMPLOY EE V IEW ) |= 16520

| σsalary>50K∧stocks>2000(EMPLOY EE V IEW ) |= 8000

Expressing cardinality constraints in terms of views will also helps in join modelling in

future.

5.2 LP formulation

The cardinality constraints and duplication distribution associated with each cardinality con-

straint and base relation are formulated as linear constraints. LP formulation requires parti-

tioning of view into a set of regions described in HYDRA [7], such that for each CCs, there

are some subset of regions that satisfies the tuple count.And the summation of tuples from

each partitioned regions matches with relation cardinality. Also Hydra [7] uses sub-view opti-

mization, to reduce the number of variables in LP. Sub-views in a Hydra are subset of views,

constructed using some subset of the attributes from view.This is achieved as follows: Con-

struct a “view-graph” by first creating a node for each attribute, and then inserting an edge

between a pair of nodes if the corresponding attributes appear together in one or more CCs.

Further, additional edges are added(if required) to make the view-graph to be chordal, a prop-

erty required to ensure acylicity in the subsequent processing .Sub-views are identified as the

maximal cliques in the view-graph. Similar to Hydra, DupGen also works on sub-views with

additional constraint that all borrowed attributes of each foreign key must reside in any one of

the sub-view.

5.2.1 Cardinality Constraints

Consider above example of EMPLOYEE and COMPANY relations, suppose there are two

queries in workload, first one aims to get employees having salary less than 90K and working

in companies having stocks less than 4000, and other aim to get employees having salary more

than 50K and working in the companies having stocks more than 2000. With the help of CCs

and after region partitioning, the Employee view will be as shown in figure 5.2.
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Figure 5.2: Region Partitioning in Employee View

And the LPs can be formed by combining regions such that they satisfy all CCs overlapping

with the view. Additionally, satisfying the summation of all region cardinality equals to relation

cardinality.

These cardinality constraints were also added in Hydra[7]

5.2.2 Duplication Constraints

Seeing query performance for different duplication distribution of foreign key, our current focus

is to formulate duplications for only foreign key attributes. Still, our algorithm is general

can be extended to work for all attributes. To divide duplication distribution of the foreign

key into partitioned regions of view, the view i s divided into intervals of borrowed attributes

corresponding to the foreign key, the intervals in view are referred as interval regions as show

in figure 5.3(i). Each interval regions will have some duplication distribution , and summation

of duplication distribution of all interval regions will be equal to duplication distribution of

foreign key at base relation. As in figure 5.3(i), imaginary dimension for foreign key is added

and its values are distributed in interval regions of borrowed attributes. If there are m borrowed

attributes and ai intervals in ith borrowed attribute then number of interval regions in the view

will be
∏m

i=1 ai.Intervalisation leads to generation of new regions referred as intervalised regions.

Figure 5.3: (i) Interval Regions (ii) Intervalised Regions

These interval regions and intervalised regions are generated for each foreign key of the view
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separately. Since a view can have multiple sub-views, and each foreign key will have all its

borrowed attributes on one of the sub-view. So, these interval regions and intervalised regions

will appear only in those sub-views that have borrowed attributes of foreign keys.

Constraints generated using duplication vector of base relation Let I = {I1, I2, ..., Im}
be the set of interval regions and duplication vector on base relation be v = {(d1, f1), (d2, f2), ..., (dn, fn)}.
Then, formulating duplication vector into linear constraints would be like dividing some integer

fraction(xji) of frequency fi for di in {(di, fi)} to each interval region, such that summation of

all fraction divided among the interval regions sums up equal to fi:

For each Ij ∈ I
|Ij| =

∑n
i=1 xj i ∗ di

For each fi ∈ v
|fi| =

∑m
j=1 xj i

Intervalised regions belonging to same interval should have summation of region cardinality

equals to interval region cardinality.

For each Ij ∈ I
|Ij| =

∑
r∈Ij r

And, regions divided into intervalised region should have summation of tuples equals to the

partitioned region cardinality(region before intervalisation).

For each partitioned region, Ri ∈ View V

|Ri| =
∑

r∈Ri
r

where r refers as intervalised region

Constraints generated using duplication vector of cardinality constraints All car-

dinality constraints associated with a foreign key have a corresponding duplication vector of

foreign key. Since, each cardinality constraints(CCs) overlaps some of the intervalised region,

we can add some linear constraints for each CC’s duplication vector. Let duplication vector

some CC be ccDup = {(D1, F1), (D2, F2), ..., (Dm, Fm)} and duplication vector of foreign key

on base relation is baseDup = {(d1, f1), (d2, f2), ..., (dn, fn)}.
Algorithm 1, discusses the set of equations that can be added for duplication vector for

each CC. The main idea behind this set of equations is for any (Dk, Fk) value in ccDup, the

overlapping interval regions with CCs, must have atleast Dk duplicates repeating at least Fk
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times. These equations are mainly added on the basis of subset property of duplication vectors,

where CC duplication vector are subset of base duplication vector. So the duplication vectors

of CC should be a subset of the union of all duplication vectors that each interval region will

have.

Also, all the above variables follow non-negative constraints. Finally, all the linear con-

straints are passed to SMT solver for the solution.

Algorithm 1: Generating LP constraints with duplication vectors of CCs

Result: LP equations for duplication vectors in CCs

1 // List of equations

2 equations← [];

3 for (Dk, Fk)← ccDup do

4 sumFx = 0;

5 for (di, fi)← baseDup do

6 if di < Dk then

7 continue;

8 end

9 for Ij ∈ I that overlaps with CCs do

10 sumFx← sumFx+ xj i;

11 end

12 end

13 equations.add(sumFx ≥ Fk);

14 end

5.3 After-LP duplication distribution

After completing the LP solving stage, we have the count of tuples for each partitioned region

in the view. And, for each foreign key, we have interval regions and intervalised regions tuple

count, and in addition to that, we have duplication distribution information for each interval.

In this section, the duplication distribution of each interval region heuristically divided among

the intervalised regions associated with that interval region. And at the end of the algorithm,

each intervalised region will be associated with some duplication vector. Algorithm 2,?? gives

the After-LP duplication distribution algorithm( can also be termed as After-LP distribution

algorithm)

Input to After-LP distribution algorithm The duplication distribution algorithm runs

for a foreign key and tries to mimic its duplication distribution. The algorithm needs the in-
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terval regions and intervalised regions associated with the foreign key, map of CCs associated

with intervalised region(CCToRegionMap), duplication vector associated with each interval

region(intervalRegionToDFvector), and duplication vector associated with CC conditionToD-

FVector, number of total tuples in the view(viewTupleCount). Before getting deep into the

algorithm and some submodules of the algorithm are discussed below. Consider all di from the

duplication vector as d values and similarly all fi values as f values.

Mapping intervalised regions and cardinality constraints Each interval region overlaps

with some set of CCs. Based on the overlapping nature of CCs inside the interval region with

intervalised regions, each intervalised region is mapped with a set of CCs that overlap with it.

And also, inside each interval, the relation between each CC is also constructed based on the

overlapping nature of CCs with each other. CCs can overlap with each other in two ways, either

partially or fully subsuming one another a shown in figure 5.4. As can be seen from figure 5.4

intervalised region R1 maps to CC1, R2 maps to both CC1 and CC2 and R3 maps to CC2 in

partially overlapping case. Both the overlapping nature of CCs will be utilised to distribute

same foreign keys to different intervalised regions(but in same interval region), by distributing

some number of duplicates to each intervalised region.

Figure 5.4: Overlapping nature of CCs

Greedy approach of choosing intervalised region The After-LP distribution algorithm

proceeds with selecting the one of the interval regions among all interval regions, based on

the maximum d value in the duplication vector of that interval region. Once the interval

region is selected, then the next big thing is to distribute that (d, f)(coming from maximum d

value and f corresponding to it) among the intervalised regions in the selected interval region.

Since we have a map between intervalised regions and the overlapping regions, we use a greedy

approach to distribute foreign keys among intervalised regions. The algorithm always selects

the intervalised regions with a maximum number of overlapping CCs to distribute foreign keys.

Once all foreign key values are assigned in that intervalised region, the next intervalised region

is selected with the maximum CCs overlapping. This process goes on till all foreign key values
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are assigned to each intervalised region.

findAppropriateDF Once the algorithm knows, that some intervalised region is having max-

imum number of overlapping CCs, then all CCs are passed to findAppropriateDF . Since all

CCs are associated with duplication vector of foreign key attribute, findAppropriateDF find

the appropriate (d, f) which can be deducted from all overlapping CCs. By appropriate (d, f),

means the maximum d value(or duplicate count) that can exist on all CCs given as an input;

and maximum f value for maximum d, that is available from all CCs. The appropriate (d, f) in

algorithm is termed as (appD, appF ). Also after one more constraint is there for (appD, appF ),

that it should be subset of (dMax, fMax) (i.e the maximum (d, f) foreign key values that

can be distributed in the current iteration of selected interval).By (appD, appF ) as a subset of

(dMax, fMax) means, (appD < dMax) and (appF < fMax).

Also, if no such (appD, appF ) found, then it will return -1. Scenarios like findAppropriateDF

returning -1 can happen since we are using LP solver and all require constraints are not added,

ensuring the exact duplication distribution. So, LP solver can give the wrong duplication

vector to the interval region compared to the original database’s duplication vector. Thus

in contrast, the distribution of the wrong duplication vector into intervalised regions leads to

findAppropriateDF to return -1.

Consider an example for finding appropriate (d, f) value.let there are two duplication vectors

v1 and v2 and (dMax, fMax) be (5,2). As a heuristic approach, the algorithm find interval

region having maximum d value(dMax) and associated f value(fMax) in duplication vector

among all interval regions and tries to distribute dMax duplicates of appF foreign keys.

v1 = (4,2) (2,1)

v2 = (3,4),(2,4)

Then (appD, appF ) will be (3,2), since the maximum number of duplicates available on

both duplication vector v1 and v2 is three and for and there are only two values in duplication

vector v1 that are repeating more than(or equal to) three times, compare to duplication vector

v2, which have four different values repeating three times. Since two different values repeating

three times is common in both duplication vectors v1 and v2, therefore (appD, appF ) = (3,2).
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Algorithm 2: distributeDFvalues

Result: Each intervalised region with some duplication vector

Input: intervalRegions,intervalisedRegions,CCToRegionMap, CCToDFvector,

intervalRegionToDFvector, viewTupleCount

1 while intervalRegions.isNotEmpty() do

2 // find interval region having maximum d value and associated f value in

duplication vector

3 currentInterval, dMax, fMax = maxDIntervalRetriever(intervalRegion)

4 overlappingIntervalisedRegions =

intervalRegionToIntervalisedRegionsMap.get(currentInterval)

5 IR =

findIntervalisedRegionWithMostOverlappingCCs(overlappingIntervalisedRegions)

6 appD, appF = findAppropriateDF(CCToDFvector,IR, dMax, fMax)

7 if appD == −1 then

8 // No appropriate d value is left to distribute

9 //(i.e dMax less than all d values available in overlapping CCs duplication

vector in that intervalRegion

10 distributeToFutureFKVal(futurePKValDistribution, currentInterval,

fkValBoundaryList);

11 intervalRegions.remove(currentInterval);

12 else

13 // distribute fMax fk values

14 distributeToVarFKValDistribution(varFKValDistribution,

overlappingIntervalisedRegions, CCToDFvector, dMax, appD, appF,

pkValBoundaryList, futurePKValDistribution, groupCCsPerInterval );

15 // update duplication vector of currentInterval by removing/updating

(dMax,fMax)

16 updateDuplicationVector(intervalRegionToDFvector, currentInterval,

toBeUsedF, dMax)

17 end

18 if intervalRegionToDFvector.get(currentInterval).isEmpty() then

19 intervalRegions.remove(currentInterval);

20 end

21 end

22 // distributes tuples inside each intervalRegion of futureFKValDistribution to left over

tuples of intervalised region associated with that intervalRegion

23 distributeFutureFKValToLeftOver(futurePKValDistribution);
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distributeToVarFKValDistribution Once findAppropriateDF gives appD, and appF and

appD is not equal to -1, then this function is called to distribute foreign key values among the

intervalised region inside the corresponding interval region. The distribution of foreign key

values can be understood as two cases.

Case 1 : (appD < dMax ) In this case, we know we have to to distribute foreign keys

for (appD, appF ); that appF number of foreign key values each repeating appD times, should

be distributed to the current intervalised region from which (appD, appF ) originated(i.e in-

tervalised region with most overlapping CCs). The algorithm uses fkV alBoundaryList to

generate foreign key values. For (appD, appF ), appF foreign key values are picked from

fkV alBoundaryList for current interval region. Those appF foreign key values are assigned

to intervalised regions with the most overlapping CCs. Since we need to distribute dMax

duplicates of appF foreign keys in the current interval for the next iteration of selecting the

interval with a maximum d value. So, to distribute the remaining duplicates of appF for-

eign keys, overlapping property of CCs will be used. The algorithm picks the intervalised

region having the maximum number of CCs and also overlaps with the current intervalised

region. From the newly picked intervalised region, the maximum d value is determined us-

ing the findAppropriateDF for the duplication vectors of all overlapping CCs in the newly

picked intervalised region. If d value equal to dMax found then distribute appF foreign keys

repeating (dMax− duplicatesDone) times where duplicatesDone is the number of duplicates

of appF foreign keys are present in that interval region. Else the intervalised region will have

maximum d value(d′), which is less than dMax, so distribute appF foreign keys repeating

(d′ − duplicatesDone) times; since still dMax duplicates are not done, again next intervalised

region is picked in saame way and this process goes, until all dMax duplicates are done for

appF foreign keys. Also, to keep track of what (d, f) value is distributed from respective CCs,

deduction in duplication vectors takes place simultaneously. For each intervalised region, the

distribution of foreign keys leads to the deduction of ((d, f) values from overlapping CCs with

it.

Case 2: (appD == dMax) In this case distribute appF foreign keys repeating appD(ordMax)

times to the selected intervalised region. Since all dMax duplicates are assigned to the selected

intervalised region, the algorithm can proceed with the next iteration of selecting interval with

maximum d value. And also, duplication vectors of overlapping CCs with the current inter-

valised regions will deduct (appD, appF ) from itself.

Both the cases distribute foreign key values among intervalised regions uses fkV alBoundaryList

as a source of foreign keys. The fkV alBoundaryList list maintains the maximum bound of for-

eign keys that can be present in the interval region of the foreign key. The utmost bound is given
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by the total number of tuples in the current view(or relation). For example: if there are four

interval regions, and the number of total tuples in that view is 100, then fkV alBoundaryList

will be [1, 101, 201, 301, 401]. And, let’s say two foreign key values have been used from first

interval region, then modified fkV alBoundaryList will be [3, 101, 201, 301, 401].

Example of foreign key values distribution

Consider the example shown in figure 5.5, it contains an arbitrary interval region with the

duplication vector (10,3) (i.e (dMax, fMax) = (10, 3)). There are three intervalised regions

and three CCs. Intervalised region R3 is the region with the most overlapping CCs. So, first,

findAppropriateDF will have a set of CCs as an input that overlaps with intervalised region

R3. findAppropriateDF will give (appD, appF ) as (3,2), since (3,2) is having maximum d

value that can be deducted from all overlapping CCs. Since appF is two, we need to distribute

two unique foreign key values in the selected intervalised region repeating appD times and in

the interval region repeating dMax times. So first, it will distribute appF foreign keys repeating

appD times in the intervalised region R3. Then for the remaining (dMax− appD) duplicates,

other intervalised regions will be used. So for now, R3 has two foreign key values repeating

three times. And, the number of duplicates for two foreign keys remaining to distribute is

seven(coming from (dMax− appD)).

Figure 5.5: Arbitrary interval region with overlapping CCs

The algorithm looks for the next intervalised region that can be used to distribute the

remaining duplicates. Since intervalised region, R2 have most overlapping CCs, and also it’s

some of the CCs overlaps with R3. The intervalised region R2 is passed to findAppropriateDF

to get the (appD, appF ) that can accommodate in R2. findAppropriateDF returns (7,2) as

(appD, appF ) . Since already from CC1 and CC2, which overlaps with both R1 and R2 have

been used to distribute (3,2) to intervalised region R3. Therefore (appD−duplicationDone) (i.e

7− 3 = 4) will only distributed to intervalised region R2. So R2 will have same two foreign key

values used in R3, with 4 duplicates of each foreign key. Still only 7 duplicates are done, and

target is to complete 10 duplicates, next intervalised region will be picked that is R1. Passing

24



CC1 of R1 to findAppropriateDF will give (10,2) as (appD, appF ). And since already (7,2)

is distributed in CC1, the remaining 3 duplicates of each of the two foreign keys are added to

the intervalised region R1. Once dMax duplication of appD is achieved, we know how much

from each CCs needs to be deducted. For example, from CC3 (3,2), from CC2 (7,2), from CC1

(10,2) is to be deducted since foreign keys are distributed in this distribution only in these CCs.

All ten duplicates of two foreign keys are distributed in the current interval region, so the

interval region still has (10,1) to distribute, which will be distributed in the next iteration as

(10,1) will be left in CC1 only. So in the next iteration, R1 will have one more foreign key

having ten duplicates since only R1 is left overlapping with CC1.

distributeToFutureFKVal If appD equals -1 or there is no more option left to distribute

foreign key values among intervalised regions, it can reduce error. Therefore add all foreign

key values, and their duplicate count is added to futureFKV alDistribution. The distribute-

FutureFKValToLeftOver function uses futureFKV alDistribution to distribute foreign keys

among the intervalised region having less number of foreign keys then its tuple count. There is

no specific rule to distribute tuples; just for each intervalised region number of the foreign key

inside that intervalised region should be equal to the tuple count of that region. The foreign key

values added because of futureFKV alDistribution results in error compared with the actual

duplication vector of cardinality constraints.
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Algorithm 3: Duplication distribution algorithm for each foreign key associated with

view
Result: Each intervalised region with some duplication vector

Input: intervalRegions,intervalisedRegions,CCToRegionMap, CCToDFvector,

intervalRegionToDFvector, viewTupleCount

1 fkValBoundaryList =[1]

2 temp = 0;

3 // Setting fk values boundary for each interval region

4 for interval← intervalRegions do

5 fkValBoundaryList.append(viewTupleCount + temp);

6 temp += viewTupleCount;

7 end

8 // Maps each intervalRegion region with fk values and its duplicate count

futureFKValDistribution = Map()

9 // Maps each intervalised region with fk values and its duplicate count

10 varFKValDistribution = Map()

11 distributeDFvalues(varFKValDistribution,

fkValBoundaryList,intervalRegions,intervalisedRegions,CCToRegionMap,

CCToDFvector, intervalRegionToDFvector )

Summary of algorithm The algorithm starts with setting the boundary for each interval’s

foreign key values. The upper bound on the number of foreign key values associated with

each interval region is the total number of tuples in the fact table(foreign key relation). Once

the linear equations for join are added, then for each interval region associated foreign key

boundaries available beforehand as a result of the LP solver.

After setting foreign key values boundaries for each interval region, the algorithm using

maxDIntervalRetirver greedily finds the interval region having a maximum d value in its du-

plication vector. Then, using findAppropriateDF , find the appD and appF for the selected

interval region, which is the intervalised region with the most overlapping CCs, and all foreign

keys are yet to be assigned to it. If appD == -1, then put all leftover duplication vector of inter-

val region to futureFKV alDistribution and remove that interval region from intervalRegions

list. Else use distributeToV arFKV alDistribution to distribute foreign key values with their

duplicate counts among intervalised regions of selected interval and update duplication vector

of interval region by removing (dMax,fMax) if dMax = appD and fMax = appF ; else update

(dMax, fMax) in duplication vector to (dMax, fMax − appF ). Once the duplication vector
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of all interval regions becomes empty (i.e. all interval regions are done with the distribution

of foreign keys either to intervalised regions or futureFKV alDistribution). In the end, all

the foreign key values inside futureFKV alDistribution will be distributed to the intervalised

regions corresponding to their interval region. As a result of the algorithm, we’ll have a dupli-

cation vector associated with the intervalised region.

5.4 Data Generation

After distributing duplication vectors to each intervalised region of foreign keys in a view, we

have a set of sub-views associated with some foreign keys and their corresponding intervalised

regions. These sub-views are merged using the same sub-view-merging algorithm proposed in

Hydra [7]. If an intervalised region(Ir) is part of some partitioned region(Pr) in a sub-view,

and after merging all sub-views partitioned region(Pr) breaks down into multiple regions, then

intervalised region(Ir) will map to some set of regions broken down from (Pr). Algorithm 4

deals with the mapping of all intervalised regions with their regions in the view constructed

after merging all sub-views.

Algorithm 4: View Summary Generation

Result: View Summary Generation

1 IRList = Intervalised Region List;

2 fkeysList = List of foreign key associate with view V ;

3 allRegions = regions after sub-view merging in a view

4 for fkey ← fkeysList do

5 IRList = Intervalised Region List for fkey;

6 for Ir ← IRList do

7 for reg ← allRegions do

8 if reg overlaps with Ir then

9 Map (fkey,reg) with Ir

10 end

11 end

12 end

13 end

Tuple generation The summary gives the list of intervalised regions mapped with regions

for each view V. The tuples are generated using view summary. For each region r in a view

summary. With region having cardinality xr will generate xr tuples. All xr tuples will contain

non-key attributes of view, which will get attribute values from region information, similar to
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Hydra[7]. And, the foreign keys associated with the view will get foreign key values from inter-

valised regions associated with each region. The foreign key values follow the same duplication

distribution obtained as a result of the duplication distribution algorithm.
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Chapter 6

Experimental Evaluation

6.1 Experimental Setup

DupGen is implemented on Java, and PostgreSQL v9.6 as the database engine. The database

and DupGen ran on a machine with 3.30GHz × 20 processor and 32GB of RAM with Ubuntu

18.04 as the operating system and Z3 as LP solver.

6.2 Size of duplication vector

This section deals with comparing the duplication vector size with the actual bound on max-

imum size of duplication vector. Table 6.1 shows that the bound on the size of duplication

vector is quite less and on an average the size of duplication vectors are also quite smaller

than the bound on duplication vector. Table 6.1 contains 4 relations from TPC-DS Benchmark

database. For 1 GB TPC-DS database, the duplication data extracted was around 40 KB,

which is quite less in comparison to actual database size.

Relation Min. size Avg. size Max. size Bound (β = O(
√
|R|)) Total tuples

store sales 6 257 924 1620 2.6 millions

catalog sales 6 194 864 1195 1.4 millions

customer 5 24 37 317 0.1 millions

inventory 1 3 5 3428 11.7 millions

Table 6.1: Duplication vector size comparison
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6.3 Duplication distribution at client site

We implemented online duplication distribution computation in the execution pipeline of Post-

greSQL. Figure 6.1, shows the accuracy, time and memory analysis of duplication vectors for

two cases of the approximate algorithm(with error parameter 0.001 and 0.0002) and one with-

out approximation algorithm on 1 GB TPC-DS database. Having an error parameter as 0.0001

ensures that, for 10,000 tuples in the relation, those values will appear in the result, which

has frequency counts of more than 10. By seeing the behavior of queries in the graph, we

can understand that duplication distribution computation without approximation consumes

more memory and time than the approximate. And, as we increase the approximation, we

are approaching towards the lesser accuracy, memory, and time consumption. So having an

approximation algorithm for computing duplication distribution has significantly reduced the

time and space overheads, but with a trade-off of reduction in accuracy of the duplication

vector. .

Figure 6.1: Accuracy, time and space analysis for online duplication distribution computation

6.4 Data generation at vendor site

The data generated by DupGen, mimics duplication vectors at base relation and tries to mimic

duplication vectors for cardinality constraints generated from query workload. Data generation

is done at view level. The data produced by our algorithm is 100% accurate on volumetric

symmetry at all nodes of query plans. Furthermore, the duplication vector of all foreign keys in

base relation matches with 100% accuracy with the duplication vectors of generated synthetic

data.
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For testing purpose, we have used the approximated duplication vectors. We approximated

the size of duplication vectors to 10, for all duplication vectors having size more than 10. The

approximation approach is quite naive for now. For restricting the size of duplication vectors

to 10, since duplication vectors on sorted on the decreasing order of d values, so first nine (d, f)

values are picked by default and for the last (d, f) we keep d as 1, f as remaining tuples in the

duplication vector that are not covered in approximated duplication vector.

The accuracy of a duplication vector of intermediate nodes of query plan is evaluated by

comparing duplication vectors of foreign key for each cardinality constraint. Figure 6.2 shows

the accuracy of foreign duplication vectors on different cardinality constraints. The results

shown in the figure 6.2 is based on 45 query workload with 84 cardinality constraints on in-

termediate nodes. Although, as can be seen from figure 6.2, there are some queries that are

giving good accuracy, these CCs are coming from the intervalised regions which are having more

number of overlapping CCs. And, the main reason behind the lower accuracy of duplication

vectors at more intermediate nodes is because of less constraints for the duplication vector of

intermediate node cardinality constraints.

Figure 6.2: Accuracy at intermediate nodes of queries

Running Time For 45 queries, running time of view summary generation takes around 42

minutes for approximated duplication vectors. The major reason behind the difference between

running time for actual vs approximated duplication vector is the LP solving stage. In case

of actual duplication vectors, even running for 5 queries, the algorithm took around 6 hrs to

complete, which clearly suggests that there is a need of an approximation algorithm.

In the overall algorithm as well, the LP solving stage consumes a lot amount of time compare

to other stages of whole data generation algorithm.
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Chapter 7

Conclusion and Future Work

7.1 Future Work

In experiments we have used approximated duplication vectors instead of actual duplication

vectors. So instead of using current approximation technique, we need to find out some other

alternative, which can limit the size of duplication vector to x, and also have minimum dupli-

cation error between approximated duplication vector and actual duplication vector.

Also second important thing is to handle joins. Currently, DupGen solves LP equations at

view level, that is only one view is solved at a time by LP solver. Instead of solving all views

in a single LP with some additional constraints for joins added to LP solver can handle joins.

The join constraints should handle the case of having sufficient number of primary key values

in regions of relation having primary key, so that those primary keys can be used to distribute

as foreign keys in the relation having foreign key. Also finding possibilities of adding more

constraints related to duplication vectors of CCs, which can help us to improve the accuracy

of duplication error.

7.2 Conclusion

DupGen currently generates data that maintains volumetric similarity for all nodes in query

plans and generates a duplication vector of all foreign keys at base relations with 100% accuracy.

Having synthetic data that satisfies duplication distribution has various use cases like in the case

Hash operator used for aggregation operation performed on synthetic data. The performance

of the hash operator will be similar for both actual and synthetic data. In the future, several

works are needed to be done like handling joins and finding an algorithm to approximate the

duplication vector, and explore more constraints that can be added to the LP solver for better

results.
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