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Abstract

The ability to estimate the query execution time is crucial for a number of tasks in database

systems such as query scheduling, progress monitoring and costing during query optimization.

Query optimizers uses two separate estimation models to find an optimal plan to execute a

query a) selectivity estimators to predict the number of input tuples b) cost model to derive

execution cost for a given plan. Significant errors occur in estimation of execution time [14] as

a result of errors in selectivity estimates as well as inaccuracies in cost modeling.

In this work we study the effect of cost model on predicting execution time by designing a

learning based cost model as opposed to traditional analytical models which are predominant

in the current query optimizers. Learning based models enable the system to capture the effects

of underlying hardware (such as speed of CPU, disk etc.) as well as operator interactions that

happen within the query plan. We propose a modeling technique to a) learn query execution

behavior at a fine-grained operator level b) capture interactions among operators by using a

pipeline aware feature set. Combining this with a powerful learning technique, we are able to

produce significantly better estimates for a set of benchmark queries. We evaluate our approach

using the TPC-H [3] workload on PostgreSQL [1].
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Chapter 1

Introduction

1.1 Introduction

Database systems can greatly benefit from accurate estimation of execution time under a given

hardware and system configuration. It has a wide range of applications including:

• Admission control: Resource managers can use this metric to perform workload allocations

such that the specific Quality of Service (QoS) goals are met.

• Query Optimizer: Optimizer can choose among alternative plans based on estimated

execution time.

• Query Scheduling: Knowing the execution time is crucial in deadline and latency aware

scheduling.

• Progress monitoring: Knowing the execution time of an incoming query can help avoid

rogue queries that are submitted in error that take an unreasonably long time to execute.
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Figure 1.1: Query Optimizer Architecture

The problem of estimating execution time is well studied over the past few years. Figure

1.1 illustrates the classical cost based architecture. The job of query optimizer is to look at the

various enumerations of query plan and pick the cheapest one. Each query plan is assigned a

cost based on the operators, choice of implementation and input cardinalities. Ideally we prefer

the estimated cost to be close to the actual time taken to run the query. In practice, this is

rarely the case primarily because of the errors from the following components.

• Cardinality estimators: They derive estimates either through meta-data or random sam-

pling. It is well studied that predicate selectivity estimates used for optimizing SQL

queries are often significantly in error [8]. The reasons for such substantial deviations are

well documented [14], and include outdated statistics, coarse summaries, attribute-value

independence (AVI) assumptions and complex user-defined predicates. Often the real

life data is skewed and attributes are correlated to each other; resulting in significant

estimation errors.

• Cost model: The job of the cost model is to look at the query plan with estimated cardi-

nalities and come up with an estimate of the execution time. Current query optimizers

predominately use analytical cost formulas to compute cost based on the amount of data

flowing through the operators. Cost model needs tuning if they are to produce estimates

specific to a target hardware. However hand tuned formulas often cannot compensate for

the effects introduced by complex query optimizations (e.g., Pipelining).
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The PostgreSQL cost model is designed to compare the costs of alternative query plans by

estimating the time taken to run a query plan (time measured in cost units that are arbitrary,

but conventionally mean disk page fetches [2]). We verified that there’s no correlation between

this cost and actual time(i.e., wall clock time) with linear regression which can be seen as an

error-minimizing mapping of the optimizer-estimated cost (which is not measured in ms) to

CPU-time. The results are not effective and were similar to the ones found in [6, 9]. Therefore

it is clear from previous work that post-processing the optimizer cost is not useful. In [16],

authors have taken a pre-processing calibration approach wherein they tune system parameters

to reflect the underlying hardware.

Recent work [6, 9, 7] has explored the use of machine learning based models for resource/execution

time estimation. In these approaches, statistical models are trained on actual execution of

training queries with certain set of features [e.g., number of joins, aggregates etc.]. After the

pre-processing, these models are usually written to disk to make on-line predictions as and

when needed. When given sufficient training data, these statistical models can fit complicated

functions and dependencies better than hand-tuned formulas. Because they are trained on

actual instances, they can usually capture wide range of effects including special cases in query

processing, hardware architecture and database configuration parameters.

1.2 How Robust Are Statistical Models?

While the proposed statistical techniques can improve estimation accuracy significantly they

also fail dramatically [7] when the queries are different from the ones seen during training.

Examples of such differences might be a change in underlying data size, distribution, changes in

query plan or a new unseen query altogether. We consider a model to be robust if the differences

between training and testing queries do not significantly degrade the estimation accuracy. In

the case of static workload where query template seldom changes (e.g., report generation tools

where only the query parameters change), this is acceptable. However workloads are often

dynamic which implies estimator must be robust to ad-hoc queries.

The issue of dealing with differences between the training and testing data effects any

machine learning approach, including the one proposed in this work. So the features need to

be extracted in such a way that it should be very unlikely for two different queries to map

to similar feature vector. For example consider the approach proposed in [7] where a query

features are essentially number of instances of each operator, input and output tuples. It then

predicts run time of a new query by averaging the execution times of k nearest queries in feature

space. With an extra aggregate in query the run time might increase substantially but changes

in feature vector might not be significant [7, 6]. We argue here that the problem is not with
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that of learning technique they used but rather with the representation of features. Accurate

estimations are difficult at plan level because much of the information about the query plan is

collapsed at that level. Hence, there is a need to consider learning at a finer granularity level

and construct rich feature sets. By going deeper into query tree, we can ensure that it will be

less unlikely for two very different queries to map to similar features.

1.3 Contributions

• We propose statistical techniques which learn query behavior at a finer granularity i.e.,

at physical implementation level of a query operator. We then compose these individual

operator running time estimates to produce an overall execution time estimation for a

given query plan.

• Through a benchmark workload we show that the proposed technique outperforms the

current state of art.

1.4 Assumptions

Before we go into the details of approach, we list the constraints we imposed to solve the

problem.

• We only consider predictions for standalone queries.

• Perfect selectivity estimates are assumed. This allows us to study the sole impact of cost

model on estimation errors.

• Number of children at any node in query tree are limited to 2. Most operators in the

engine are unary or binary. However there are tiny fraction of operators which can have

more than 2 children (e.g., Bit-OR, Bit-AND), here the number of children are unbounded.

The rest of the report is organized as follows: we start with an overview of proposed approach

in Section 2. We introduce operator level models and the problems in extracting training data

in Section 2.1. We propose a feature that is “pipeline-aware” as a solution in Section 2.2. We

then describe the training and testing phases in Sections 2.3 and 2.4, respectively. We validate

our approach and present the results in Section 3. We discuss related work and the applicability

of their solution to the current problem in Section 4. Next, we discuss the shortcomings of our

approach in Section 5. We conclude the report by discussing future work in Section 6.
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Chapter 2

Proposed Approach

2.1 Overview

Figure 2.1: Overview of proposed approach

Our approach consists of two distinct phases: an off-line Training and an on-line Testing.

During training phase, we execute a specific set of queries on the target system and collect the

feature set for each operator. For each physical implementation of an operator, we build two

models; start time model to predict the time taken to produce first tuple and end time model

to predict the time taken to produce rest of the tuples. We recursively use this information
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Figure 2.2: Example Query Plan Tree

from child operators to produce an estimate for its parent operator. Hence, the total execution

time will be the sum of start and end time of the root node in plan tree. Since there are only

handful of operators in the engine, this approach of learning models for each operator is feasible

in terms of both time and space complexity.

2.2 Operator Level Models

It is important that we generalize to arbitrary queries not seen during training. For this

purpose, we use the fact that query plan are broken into a set of SQL operators within database

engine already. Each SQL operator has multiple physical implementations. Since each of the

implementation significantly differ in terms of running time and space consumption, we need

to further distinguish them. Therefore we build models for each such implementation of an

operator. Because this approach mimics the way SQL queries are executed, this allows us to

make predictions for any arbitrary query by composing individual operator estimates.

Training a operator involves extracting individual running time of an operator from the total

execution time. In a non-pipelined environment this is simple and requires no further work.

But most databases including PostgeSQL has a pull based execution model which introduces

pipelining. Here, operators can be divided into blocking/non-blocking categorized according to

their nature of processing input. A blocking operator needs to process all rows before it can

pass the data to its parent, while a non-blocking operator passes rows to its parent as soon as

they are read and processed. For example, a Nested Loop is a non-blocking operator and Hash

is blocking operator since probing cannot begin unless the hash table is entirely constructed.

A series of non-blocking operators create a pipeline with output of child operator connected as

an input to its parent.

Consider the sample query plan shown in Figure 2.2, both the Sequential Scan and Nested
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Loop operators are non-blocking which allows them to pass on the tuples to their parent as

soon as they are read and processed. This creates a pipeline and it speeds up the processing

by making use of the possible computation and I/O overlap present in the query. The end-

effect of such concurrent behavior on execution time is difficult to capture perfectly but can be

approximated to some extent by finding patterns in corpus of training query executions.

To take these subtle differences into consideration, we build two learning models for each

operator:

• A Start time prediction model to find the time taken by an operator (including sub-query

rooted at this operator) to produce its first tuple. This allows us to capture the blocking

nature of operator and help parent operator in deriving its own estimate.

• An End time prediction model to find the time spent in producing the rest of the tuples.

To illustrate the notion of start and end time, consider Hash-Join operator with a table

scan for outer table. To begin the join operation, we first need to construct the hash table on

inner table. After the construction, hash table gets probed for each tuple in outer table. Here

the start time of Hash-Join operator is the time spent to build the hash table plus the time

taken to emit first tuple after a successful probe. End time is difference between the production

of last and first tuple. Hence the total time taken by an operator is the sum of start and end

times.

2.3 Features

We used a fixed set of features to create models for each operator. The complete list is shown in

Table 2.1, values for these features are extracted from PostgreSQL 9.4 explain analyze command.

These features are applicable to almost all operators. When not applicable (for e.g., leaf nodes

which does not have children), values are substituted with a default value.
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Feature

Number of left child input tuples

Width of left child input tuple

Number of right child input tuples

Width of right child input tuple

Number of output tuples

Estimated left child start time

Estimated left child end time

Estimated right child start time

Estimated right child end time

Is left child a Blocking operator(0/1)

Is right child a Blocking operator(0/1)

Table 2.1: List of features.

The features shown in Figure 2.1 are based on the domain knowledge of database internals

and the features considered by previous work in literature [7, 6]. We have evaluated all the

subsets for suitability using Exhaustive subset search w.r.t the metric defined in Section 3.1.

The set as a whole produced better accuracy compared to any of the proper subset.

However this list is no way exhaustive as query plans usually contain many more attributes

often very specific to an operator. For example, seq scan with a filter takes different amount

of time based on the evaluation complexity of predicate and number of those predicates. More

features usually attribute to better accuracies, and hence using operator specific features can

further improve accuracy. However the amount of training data needed is directly proportional

to the number of features. So there’s a implicit trade-off here. In this work, we limit ourselves

to a fixed number of features.

Having described the intuition behind selection of these features, we now move on to explain

how the predictions for a query plan can be made. Query plan predictions are computed by

composing the individual operator predictions; specifically we traverse query tree in a post order

fashion (left child, right child and root). The parent operators use the estimates produced by

their children as part of the features. This allows us to build predictions progressively. On the

downside this also means that prediction errors are propagated.
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2.4 Training

In this phase, prediction models are derived by executing set of queries and observing their true

running times. More precisely, example instances of both start and run time are collected for

each operator present in query plan. By executing more number of queries, we can obtain more

example instances which can in turn lead to better predictions. The training queries need to

be chosen such that:

• The example instances need to be significantly “different”. By difference between training

examples we mean that the variance within each feature is large. This can be achieved to

an extent by executing queries under a combination of different scales, data distribution.

• They cover all the operators. This is particularly important because it directly determines

what type of testing queries are allowed. We cannot have a query plan which contains

an operator that is not associated with prediction model. Usually, Query Optimizer is

sensitive enough to produce different plans with change in data distribution and size. For

example, in case of a table scan optimizer chooses Index scan when fewer no. of tuples

qualify and a seq scan when there are beyond a certain no. of tuples.

• Each operator has sufficient number of example instances. For the current feature set

with 10 features, we need to have approximately a thousand example instances. Some

operators are sparse in nature and they are not readily available in query plan. To handle

this, we need to add hand-tuned queries that contain a specific operator. Running these

queries under different tables, scales will mitigate the issue to some extent.

Once we have the example instances, we now need to find the prediction model that best

explains the given data. We have tried multiple predictions models including linear, non-linear

kernels in Support Vector Regression (SVR) and Tree based models. The linear models fared

worst among all, because of their inability to model non-linear relations among features. Tree

based models such as Gradient Boosting performed the best, however their learning times are

beyond reasonable even with that of a scalable and parallel implementation (XGBoost, available

at [5]). Tree based models also lack the ability to “extrapolate” which limits the generalizing

ability of model. Therefore we have settled with SVR using Radial Basis Function (RBF) as its

kernel. We demonstrate the accuracy gains possible with non-linear kernel over linear kernel by

showing prediction results for each operator based on internal cross validation. For complete

information, refer the Appendix Tables 1, 2. Note that SVR need to be tuned properly to fit

the underlying data. There are two parameters associated with it:
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• C - This is a regularization constant that trades complexity for accuracy. Low values

usually produce very simple models that underfit, while large values tend to overfit the

data.

• γ - This is a kernel coefficient for RBF. Intuitively, the gamma parameter defines how

far the influence of a single training example reaches. The behavior of the model is

very sensitive to the gamma parameter. If gamma is too large, the radius of the area of

influence of the support vectors only includes the support vector itself and no amount of

regularization with C will be able to prevent overfitting. When gamma is very small, the

model is too constrained and cannot capture the complexity or “shape” of the data.

C, γ are continuous variables and finding ideal values require an exhaustive search. Trying

exponentially growing sequences of C and γ is a practical method to identify good parameters.

C = {2−3, 2−1, . . . , 215},
γ = {2−10, 2−8, . . . , 23}.

The above range for C and γ is what is usually recommended in literature for fitting complex

functions. We used Grid search to train SVR for each pair (C, γ) in the cartesian product of

these two sets and evaluated their performance by internal cross-validation on the training set.

At the end, grid search algorithm outputs the settings that achieved the highest score (w.r.t

metric defined in Section 3.1) in the validation procedure. Model with the best hyper-parameter

values will be trained on entire training set. Grid search is embarrassingly parallel because the

hyper-parameter settings it evaluates are independent of each other. So, we have parallelized

the grid search in Python and were able to obtain speedup proportional to the number of cores.

In this way, for every operator we learn two prediction models and materialize them to disk.

Note that SVR also requires the individual features to be normalized which implies that we

need to have the same scaling functions for both training and testing. Hence, we also write the

corresponding scaling function to disk. The overall space consumption (including models and

scaling functions) is around 4MB.

With the pace hardware speeds and predictions model are evolving, it is very well possible

that a new prediction model can have the best of prediction accuracies as well as the running

times (e.g., Recurrent neural networks [4]). It would be interesting to see impact of those

techniques when embedded in this framework.

10



2.5 Testing

For a given query plan, we predict the execution time by traversing through its nodes in post-

order fashion. At each node, we invoke the earlier materialized model(s) to get an estimate.

These estimates are in-turn used by parents to produce their own estimate. The estimated

execution time of a given query plan is therefore the sum of start and end prediction times of

root node.

Special cases like leaf and unary nodes are handled by assuming a default value for the

unavailable features. For example, in case of a unary operator like Sort we assume a zero value

for number of tuples in right child. Note that this does not impact the prediction accuracy as

features with zero variance are not considered during evaluation.
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Chapter 3

Experimental Evaluation

In this section we evaluate the accuracy and robustness of our technique along with the current

state of the art [16]. To evaluate the robustness we have specifically taken test queries which

are different from that of training.

3.1 Setup

• Database management system: PostgreSQL 9.4 [1]. Please note that the earlier Postgres

version lack the instrumental features that training requires (such as actual running time

of node).

• Datasets and Workload: We have used TPC-H benchmark [3] queries for training the

predictive models. We generated underlying data distribution by a tool published at [11];

this generates data which follows Zipfian distribution and allows us to control the degree

of skewness by setting a value for Z (with 1 being uniform and 4 being highly skewed).

In our experiments we have set Z to 2 which ensures that there are significant differences

between queries even among the same template. We have used QGEN [3] tool to generate

20 instances for each query template; producing a total of 420 queries for a total of 21

query templates. For enabling prediction models to learn the effect of the scale of data

we have ran these queries across 0.1, 0.5, 1, 2 and 3 GB. Therefore, our training set had

a total of 2100 queries. For testing, we have separately generated one query for each

TPC-H template and used a larger 5 and 10GB workload.

• Hardware: All the training and testing queries were executed on a machine with 3.0 Ghz

Intel Core Extreme processor and 8 GB of RAM. Queries were executed sequentially by

flushing operating system and database buffers.

12



• Predictive models: We have used Python’s sckit-learn [12] library for all the ML imple-

mentations.

• Error Metric: We have used the Q-Error (QE) [8, 10] as our error metric.

QE(a, b) = Max(
a

b
,
b

a
)

Similarly, we use Average Q-Error(AQE) to compare the efficiency for a set of queries.

This metric is useful when we would like to minimize the prediction error regardless of

their execution time. Other metrics like square error are useful when we want to minimize

the absolute difference between actual and predicted time. In previous work [16, 6, 9],

authors have used metric called Relative Error(RE). It is defined as:

RE(a, b) =
|a− b|
a

The problem with this metric is that it is biased towards under estimation i.e., we can

always underestimate the value of b (e.g., 0) and get a RE of 1.0. As such, in many cases

they can have deceptively low Mean RE even though the actual estimates have high error.

In contrast, Q-Error metric is unbounded.

• Alternative techniques: We compare the accuracy and generalization ability of tuning

approach proposed in [16]. As in their case, we will assume perfect selectivity estimates

while producing the results. For ease of reference, we refer their [16] approach as Tuning

and our approach as Learning.

3.2 Evaluation

In this experiment we have generated the test queries using QGEN tool. We made sure that the

training and testing queries do not contain identical query (i.e., same template and instance).

We have shown the per query error in Table 3.1 and 3.3 for 5 and 10GB respectively.

In Table 3.2 and 3.4, we show the summary statistics. For 5GB data-set, Learning outper-

formed Tuning approach by “1.9x”. Intuitively, AQE of 2.1 indicates that on an average the

predictions were within twice/half of actual execution time. In the case of 10GB data-set, both

the learning and tuning performed similarly and there were no accuracy gains using Learning

here. In our approach, we observed that errors made by individual operators are propagating

and getting multiplied because of the way features are modelled recursively. This problem does

not impact the Tuning approach in the same magnitude because errors made by operators are

independent with respect to each other.
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Query Actual(ms) Tuning(ms) Learning(ms) QE(Tuning) QE(Learning)

1 118801 87412 94990 1.35 1.25
3 24680 65927 46382 2.67 1.87
4 614 1138 901 1.85 1.46
5 80482 72251 47730 1.11 1.68
6 46634 6891 57117 6.76 1.22
7 61630 66987 62918 1.08 1.02
8 142814 71306 51323 2.00 2.78
9 68407 61606 74627 1.11 1.09
10 53056 54876 8063 1.034 6.57
11 6415 107594 1211 16.77 5.29
13 20802 77402 17466 3.720 1.191
14 2132 30934 4364 14.50 2.04
15 7008 26640 7732 3.80 1.1
19 37275 9516 34764 3.91 1.072
20 44664 74347 65019 1.66 1.45
21 13315 3994 3622 3.33 3.67

Table 3.1: Per Query running time w.r.t TPC-H (5GB)

Tuning Learning
Average 3.98 2.10

Minimum 1 1
Maximum 16.77 6.5

Table 3.2: Learning and Tuning comparison w.r.t QE, TPC-H (5GB)
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Query Actual(ms) Tuning(ms) Learning(ms) QE(Tuning) QE(Learning)

1 247585 187922 88871 1.31 2.78
4 195173 37761 56968 5.16 3.42
5 991958 51398 65201 19.29 15.21
6 88512 110234 5093 1.24 17.37
7 182561 133116 66095 1.37 2.76
8 403421 79910 71331 5.04 5.65
9 1414600 155381 57690 9.1 24.52
10 205293 133743 128747 1.53 1.59
11 230688 3968 12299 58.12 18.75
13 743406 35508 63888 20.93 11.63
14 98107 95596 32181 1.02 3.04
15 101742 22418 115193 4.53 1.13
16 399465 639420 31805 1.6 12.55
17 220425 518937 31965 2.35 6.89
18 87808 136058 31784 1.54 2.76
21 126832 8216 7956 15.43 15.94

Table 3.3: Per query running time w.r.t TPC-H (10GB)

Tuning Learning
Average 9.12 9.35

Minimum 1.24 1.13
Maximum 58.12 24.52

Table 3.4: Learning and Tuning comparison w.r.t QE, TPC-H (10GB)
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Chapter 4

Related Work

Recent work has explored the use of machine-learning based techniques for the estimation of

both run-times as well as resource usage of SQL queries, both for queries in isolation [6, 9], as

well as in the context of interactions between concurrently executing queries [15].

The work done in [7] is the first of its kind to embed Machine learning techniques inside query

optimizer. However it has lot of limitations on its applicability:

• The resource estimate for a query Q is obtained by averaging the resource characteristics

of the three queries in the training data that are the most similar to Q after mapping

Qs feature vector using Kernel Canonical Correlation Analysis (KCCA) into a suitable

similarity space. This becomes a problem when we are trying to estimate the resource

consumption of a significantly expensive query than all the training queries, the estimated

value can never be larger than the ones encountered during queries. Thus, this technique

is not capable of “extrapolating” beyond the training data.

• It models the queries at Plan level with set of key, value pairs as features. Every physical

database operator corresponds to a key and the sum of all the input cardinalities for that

operator in the query plan corresponds to the value. This makes the approach vulnerable

to changes between training and test data not encoded in this feature set e.g., when the

training and test queries use different schemas and databases, the estimated run-times

were up to multiple orders of magnitude longer than the actual time the queries ran (as

shown in Figure 15 in [7]). For static workloads, where the incoming queries are simply

instances of an already known query template this approach is suitable but it lacks the

generalizing ability required for ad-hoc queries.

The approach proposed in [6] mitigates this issue to some extent by introducing operator level

models for predicting execution time. The models offer the generalization properties to an
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extent but their ability is limited by the choice of machine learning method they have used.

The authors use linear regression models for each operator; that means they implicitly force the

output to vary linearly with each input feature. In reality, the relationship between features

and execution time is non-linear.

The work of [9] explores the use of powerful statistical learning techniques such as boosted

regression trees along with scaled functions. They primarily focus on estimating the logical

CPU and I/O consumption for a query. In contrast, we focus on estimating the actual execution

time(physical). Their approach is limited to database with a “push based execution model”

where child nodes execute completely before passing their data to parent nodes. Therefore,

they cannot straightaway work for database systems such as PostgreSQL without accounting

for its style of execution.

The approach proposed in [16] looks at tuning the internal cost parameters of PostgreSQL

engine. They do this by running a set of calibrated queries and computing the values of cost

parameters. Their approach can generalize to ad-hoc queries and produce estimates with best

accuracy making it the current state-of-art. However being analytical they lack the power to

account for the query optimization within operators and query interaction among operators

(Compute & I/O) overlap. In contrast, we try to account for these effects produced by those

subtle optimizations by looking at patterns on actual query executions on a target hardware.

Finally our work is also related to [8] in the context of studying the effect of cardinality

estimators and cost model on the overall execution time estimation. Through a set of join order

benchmark queries (JOB) they show that cardinality estimates often introduce magnitude of

errors that they outweigh the errors introduced by cost model.

4.1 Limitations

Having discussed the approach, in this section we comment on limitations of our approach:

• Pre-processing overheads: We have a one-time training and computing phase which takes

considerable amount of time to finish.

• Implementation environment: We currently implement the estimation framework outside

the PostgreSQL database engine in Python. For it to be applicable to query optimizer,

we need to implement this inside database engine in C programming language. However

currently C language has very limited support for complex ML libraries.
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Chapter 5

Conclusion

In this work, we studied the effect of cost model on overall execution time estimation. We

have shown that with true selectivity estimates in place we can achieve either similar or better

predictions. We achieve these improvements by using a pipeline aware feature set along with

a powerful learning model that can account for the complex dependencies. By modeling at

the level of physical implementation of an operator, we have shown that predictions for ad-hoc

queries can be achieved.
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Chapter 6

Future Work

Figure 6.1: Example Plan Diagram

We believe this work opens up lot of opportunities to further improvise the estimates. For

e.g., in training phase we wish to replace ad-hoc learning by Incremental Learning; currently

we rely on TPC-H skew generation tool [11] to produce query instances that hope to have

a varying resource consumption among the same query template. Instead, we can manually

explore through the error prone selectivity space. For example, consider the plan diagram shown

Figure 6.1 produced by the Picasso tool [13], where each color represents a different plan. It can

be seen that just for a single query there are as many as 109 query plans. To extract these query

plans, we need to systematically explore the 2-dimensional selectivity space i.e., [0, 100]×[0, 100]

at a fixed step-size/resolution. At every such point in the space we find the corresponding query
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instance and add it to training set. This way, we can efficiently “discover” different query plans

available in plan space which reduces the number of training queries required (consequently

pre-processing time) and can possibly produce better models. With such learning system in

place, it would be interesting to study the relation between accuracy and number of training

examples which can help us find the saturation point.
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Appendices
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Evaluation of Linear Kernel

Operator Min QE Max QE Avg QE

sSort-top-Nheapsort 1.00 1.01 1.01

sMaterialize 7.85 55.64 31.16

eBitmapOr 1.03 1.31 1.15

eNestedLoopNestedLoop 1.00 1.02 1.01

sHashJoin 3.01 18.86 7.45

eNestedLoopBitmapHeapScan 1.25 1.55 1.39

sAggregate-Hashed 1.57 35.70 8.48

eNestedLoopIndexOnlyScan 1.35 55.97 17.84

eMaterialize 2.15 41.58 15.58

sNestedLoopIndexScan 2.06 17.48 5.45

eHash 1.01 1.03 1.02

sBitmapAnd 1.08 49.68 16.20

sAggregate-Sorted 19.25 79.28 36.13

sLimit 1.01 3.32 1.48

sNestedLoopIndexOnlyScan 1.02 1.08 1.05

eSeqScan 1.77 2.51 2.01

eSort-top-Nheapsort 1.00 1.01 1.01

eNestedLoopMaterialize 2.71 5.70 3.67

eSort-quicksort 1.03 14.38 4.05

eNestedLoopIndexScan 34.55 76.34 54.89

eAggregate-Plain 1.08 1.17 1.12

sAggregate-Plain 1.08 1.17 1.12

eSort-externalmerge 1.23 4.04 2.60

eAggregate-Sorted 1.00 1.01 1.01

eSort-externalsort 1.20 3.61 2.09
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sNestedLoopNestedLoop 1.00 1.12 1.05

eLimit 1.01 3.32 1.48

sHash 1.01 1.03 1.02

sNestedLoopMaterialize 2.94 34.84 12.37

sSort-quicksort 1.01 7.96 3.49

sMergeJoin 109.91 890.37 525.76

eNestedLoopSeqScan 1.00 2.28 1.27

eBitmapHeapScan 10.26 18.60 16.10

sBitmapIndexScan 2.67 12.14 7.44

sNestedLoopBitmapHeapScan 1.35 3.37 2.01

sSeqScan 15.57 529.31 190.85

eAggregate-Hashed 1.57 36.43 8.62

eHashJoin 2.06 22.55 7.42

eIndexScan 6.13 9.26 7.63

sNestedLoopSeqScan 1.00 7.61 2.77

sBitmapHeapScan 1.23 1.80 1.51

sIndexOnlyScan 1.46 3.58 2.51

eBitmapIndexScan 2.67 12.14 7.44

eMergeJoin 4.75 56.15 17.20

sSort-externalmerge 1.23 3.54 2.41

sIndexScan 2.31 10.36 4.94

sBitmapOr 1.03 1.31 1.15

eIndexOnlyScan 1.07 10.22 3.05

sSort-externalsort 1.21 3.67 2.13

eBitmapAnd 1.08 49.68 16.20

Table 1: QE for each operator using Linear kernel
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Evaluation of Non-Linear Kernel

Operator Min QE Max QE Avg QE

sSort-top-Nheapsort 1.01 1.10 1.04

sMaterialize 4.11 90.26 43.66

eBitmapOr 1.03 1.31 1.15

eNestedLoopNestedLoop 1.00 1.24 1.10

sHashJoin 7.34 31.33 20.07

eNestedLoopBitmapHeapScan 1.09 1.92 1.38

sAggregate-Hashed 1.05 20.16 4.96

eNestedLoopIndexOnlyScan 1.36 58.20 18.45

eMaterialize 2.19 20.94 10.33

sNestedLoopIndexScan 12.22 30.14 19.32

eHash 1.11 1.69 1.36

sBitmapAnd 1.06 47.65 10.97

sAggregate-Sorted 15.22 37.21 24.69

sLimit 1.00 1.79 1.18

sNestedLoopIndexOnlyScan 1.04 2.59 1.42

eSeqScan 2.01 2.76 2.35

eSort-top-Nheapsort 1.01 1.10 1.04

eNestedLoopMaterialize 1.42 50.28 14.56

eSort-quicksort 1.05 4.05 1.72

eNestedLoopIndexScan 3.04 333.78 86.75

eAggregate-Plain 1.04 1.56 1.18

sAggregate-Plain 1.04 1.50 1.15

eSort-externalmerge 1.66 3.37 2.67

eAggregate-Sorted 1.00 1.04 1.02

eSort-externalsort 3.12 17.51 8.49
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sNestedLoopNestedLoop 1.00 1.26 1.11

eLimit 1.00 1.79 1.18

sHash 1.11 1.69 1.36

sNestedLoopMaterialize 7.24 20.36 13.96

sSort-quicksort 1.05 4.08 1.73

sMergeJoin 17.64 254.71 134.49

eNestedLoopSeqScan 1.00 17.82 5.81

eBitmapHeapScan 3.20 92.47 22.18

sBitmapIndexScan 4.52 14.12 9.21

sNestedLoopBitmapHeapScan 1.21 2.75 1.73

sSeqScan 23.08 616.10 237.35

eAggregate-Hashed 1.05 19.05 4.73

eHashJoin 1.07 11.29 3.36

eIndexScan 5.82 10.71 7.95

sNestedLoopSeqScan 1.00 14.30 4.88

sBitmapHeapScan 1.37 17.21 4.77

sIndexOnlyScan 1.49 9.53 4.22

eBitmapIndexScan 4.52 14.12 9.21

eMergeJoin 2.24 24.58 7.44

sSort-externalmerge 1.58 3.13 2.48

sIndexScan 2.28 10.33 5.20

sBitmapOr 1.03 1.31 1.15

eIndexOnlyScan 1.61 9.06 3.17

sSort-externalsort 3.17 18.49 8.91

eBitmapAnd 1.06 47.65 10.97

Table 2: QE for each operator using RBF kernel
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