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Abstract

Graphics processors (GPUs) have emerged as a powerful co-processor for general-purpose com-
putation. GPUs have been very widely used for various applications including database query
execution. GPUs have an order of magnitude higher computation power as well as the memory
bandwidth but they have a bottleneck of limited GPU device memory and transferring data be-
tween CPU main memory and GPU device memory. The database optimizer generates a query
plan i.e. a tree structure which contains operators as nodes and edges represent the dependency
between the nodes. The problem is how to divide the nodes of this tree-structured query plan,
given by MonetDBJ[1], into the heterogeneous environment (CPU and GPU). We have proposed
greedy approach and dynamic programming approach for the chain trees i.e., trees in which
nodes have exactly one child. We have also verified that HEFT (Heterogeneous Earliest Finish
Time) algorithm[14] works very well for non-chain trees i.e., trees in which nodes have many
child nodes. We have also implemented operators for hybrid environment (CPU-GPU) i.e.,
running a single operator in the hybrid environment by using data parallelism. The thesis also

includes the resource configurable implementation of filter and hash join operators.
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Chapter 1
Introduction

GPUs have evolved into general purpose computing with the emergence of efficient parallel
programming models, such as CUDA[2]. The use of such heterogeneous computing devices is
highly recognized as the only promising way to achieve application speedups. GPUs high com-
putational power gives us the possibility of accelerating execution of database queries. However,
there is still a significant challenge for using GPUs in the most effective manner to speed up
the database query execution. The database query (Query 1) is converted into execution plan
tree, as shown in Figure 1.1, which is given by the database query optimizer. In this plan tree,
relations are specified in ellipses and rectangles show the operators at the different level. The
optimizer finds this optimal plan tree such that the execution time of the query is minimal. An
optimizer uses its cost model to estimate the cost of different query plans generated for a query.
This cost model give its estimated cost based on the input selectivity (number of tuples in the
input), organization of data on the disk, indexes available, the operator algorithm and other
metadata. The database query optimizer used by us is the one given by MonetDBJ[1] as it uses
columnar storage. The plan given by MonetDB is a CPU-optimized plan and we are using this
plan to run it in a heterogeneous environment. The plan given by MonetDB is in the form of
MAL (MonetDB Assembly Language)[1] instruction and we are converting these instructions
into the tree-structured plan. The problem we are trying to solve is the optimal assignment

and scheduling of plan nodes into the CPU and GPU so as to get the minimum execution time.



Select sum(l_extendedprice) as sum , l_orderkey

From lineitem, orders, customer

Where lorderkey = o_orderkey and o_custkey = c_custkey
and c_acctbal > 5000 and o_totalprice > 10000

group by l_orderkey;

Query 1

Figure 1.1: Plan Tree

In this report we have given two approaches for solving this problem for chain trees- greedy

scheduling and dynamic programming scheduling. The dynamic programming scheduling gives
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the optimal assignment of nodes into CPU or GPU which works slightly better than the greedy
approach but the amount of time taken to output the scheduling is much more in case of
dynamic programming approach. For non-chain trees, we have verified that the execution of
the plan in CPU-GPU environment such that the assignment and scheduling of the plan nodes
is done by using HEFT (Heterogeneous Earliest Finish Time) algorithm[14] works very well
as compared to CPU only execution. Until now the operator was either running in CPU or
GPU but we have also explored the prospect of running intra-parallelism operators i.e. running
a operator in CPU-GPU environment. The operators are implemented to use both CPU and
GPU in single run by dividing the amount of data processed by that operator. This gives better
performance for queries where it’s not possible to use both CPU and GPU simultaneously to
execute the query as in case of chain tree structured plans. It can also be used for certain nodes

in non-chain plan trees if one of CPU or GPU is sitting idle.



Chapter 2
Background and Preliminaries

The database storage in our system is similar to that of MonetDBJ[1]. There is a significant devi-
ation in the storage model of MonetDB from traditional database systems. The relational tables
are represented using vertical fragmentations, by storing each column in a separate (id,value)
table, also called a BAT (Binary Association Table). These BATs are stored in the separate
files. All the intermediate results are also stored in the form of BATs. The reasons for choosing

MonetDB for comparison as well as the storage model are following -

e Before executing the algorithm on the GPU, we have to transfer input data from the CPU
host memory to the GPU device memory. The transfer operation from CPU main memory
to GPU device memory and vice versa is costly as it happens on limited bandwidth PCle
bus. The columnar storage aids us to only send the required part of relation to the device

memory hence reducing the transfer cost.

e [t is an in-memory database. For executing any operator on GPU, the data should be in
GPU device memory as GPU cannot directly access directly main memory to do disk 1/0O.

Therefore it is necessary to consider that the database is present in the main-memory.

e Since less data is required for any operator, better cache and shared memory optimizations

are possible.

2.1 Background on GPU

GPUs are originally designed as co-processors for CPUs to process graphics tasks. In re-
cent years, they have evolved into a powerful accelerator for many applications such as High-

Performance Computing (HPC) and deep learning. Though the detailed components of GPUs
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from different vendors vary, their general architectural designs can be abstracted in the same
model as shown in Figure 2.1. For illustration purposes, we use the terminology of Nvidia
GPU. GPU consists of many streaming multiprocessors(SMs) and each SM consists of many
SIMD (Single Instruction Multiple Data) Lanes. At any given clock cycle, all SIMD lanes of a
particular SM execute the same instruction but operates on different data. The GPU supports
thousands of concurrent threads. The threads on each SM are organized into groups called as
warps. Warps are dynamically scheduled on SMs. Each thread in a particular warp (typically
group of 32 threads) execute same instruction at a clock cycle. When a warp is scheduled on
the SM, then each thread in a warp gets one SIMD lane to get executed and as there are as
many numbers of SIMD lanes as a number of threads in a warp and all of them can execute at

the same clock cycle.
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Figure 2.1: GPU Architecture



The kernel is a basic function which executes on GPU. It can be written in CUDA[2] or
OpenCL[3]. Whenever the host thread launches (calls) the kernel, it is scheduled on GPU and
gets executed on the GPU with control returning to the host thread i.e launching of the kernels
by the host thread on the GPU is non-blocking. Therefore host thread could launch multiple
kernels even though the first kernel has not even started execution. We can specify the number
of threads that we want to launch for that kernel. The number of threads is specified in the
form of grid size and the number of threads. The grid is the collection of thread blocks whereas
each thread block is the collection of threads.Each thread runs the instructions in the kernel
independent of each other, therefore each thread requires their own set of registers for the
variables. The programmer could write the kernel in such a way that each thread can allocate
memory for the variables on the on-chip cache (shared memory) so that the thread does not
have to access the device memory repeatedly for the variable. Shared memory is allocated on
a per thread block basis, therefore, all the threads belonging to same thread block can access
shared memory allocated for that thread block. Each SM has fixed a number of registers, fixed
amount of shared memory, which is a software controlled cache in contrast to CPU which has
hardware control cache. Each SM can have at the most certain number of threads and thread
block to execute. A thread block of a kernel is a schedulable unit on SMs i.e. either all the
threads of a thread block are scheduled on SMs or none of them. Once the thread block is
scheduled to SM, it will not be preempted from that SM until all of its threads have completed

their execution.

Stream

The stream is a sequence of operations that execute in issue-order on the GPU. The operation
in a stream start execution only when earlier operations in that stream have completed their ex-
ecution. The operations in different streams may run concurrently or they may be interleaved.
The operation could be a kernel execution or a memory transfer operation from host to device
memory or from device to host memory. We are using streams extensively for asynchronous
data transfers between these memories as well as for concurrent kernel executions in cases where
it is possible.

In figure 2.2[8], kernel K, P; and @; can be executed concurrently while kernel K5 will only
be scheduled when K is executed i.e. when all the thread blocks of kernel K, are executed.
A stream is said to be executed when all its kernels have completed their execution. A stream
is said to be activated when it is ready to schedule its front kernel on the GPU. In Figure 2.2,
stream 1 is ready to schedule kernel K; on the GPU. Once the GPU scheduler has scheduled
all the thread blocks of kernel K; on the GPU then Stream 1 will be deactivated as it is not



ready to schedule its kernel K5 on the GPU. This is because stream 1 is waiting for kernel K;

to be executed. Streams can be created in the following two ways:

1. By calling CUDA function cudaStreamCreate explicitly which launches the kernel in

different stream.

2. By creating POSIX threads, each thread will have its respective default stream. Kernels

launched by different pthreads will execute in different streams.

Stream 1 °

Stream 2

o B
Resoiitee

4 ppoa

Streaming Multiprocessors

Stream 3

Figure 2.2: Stream Execution



Chapter 3

Related Work

GPUs have been very widely available for last decade which resulted in data co-processing on
these GPUs. Govindaraju et al.[10][9], first presented their work on relational operators running
on graphic cards. They investigated relational query processing by implementing complete set
of database operators for the GPUs as well as for CPU so that their storage model i.e. columnar
storage could be run on this system. We are also using these operator implementations in our
system. Manegold et al. developed a hardware-oblivious system, Ocelot[11], which can execute
a complete query on either CPU or GPU but there is no CPU-GPU heterogeneous computing
involved. There has been some other work[13][6] which mostly talks about query executions on

GPU.



Chapter 4

Database Operators on GPU

The implementation of various database operators on CPU and GPU has been taken from the
work presented by Govindaraju et al.[10][9]. These operators are implemented for CPU using
openmp(4] and for GPU using CUDA[2]. Following are the implementation details of various
operators on GPU-

Selection

The selection operator outputs a subset of tuples from the relation based on a certain condition
i.e. tuples which satisfy the condition remains in the output and others are discarded. Selection
is implemented using map, prefix scan and scatter primitives. First, the map primitive pro-
cesses the input tuples (array containing the column values) that results in the corresponding
0-1 array (0 represents the column value does not satisfy the condition and 1 represents the
column value satisfy the condition). Then the prefix sum is computed on that array and stored
into another array. Lastly the result is scattered using scatter primitive to the output array

according to the previous result arrays.
Projection

The projection operator extracts a column of the relation based on the given record IDs. It
is implemented using gather primitive. A gather primitive performs an indexed reads from a
relation. The read location for each output tuple is defined by a location array. It uses sorting

if the elimination of the duplicates is required.



Order-by

The order-by operator is implemented using sort primitive specifically quick sort. First, the
algorithm divides the relation into multiple chunks using a given set of randomly chosen pivots.
This splitting process goes recursively until the chunk size is smaller than the local memory

size. Lastly these chunks are sorted in parallel using the bitonic sort method.
Group-by and Aggregation

The sort primitive is used for grouping and reduce primitive is used for aggregation. The
sorting on GPU is explained in the previous paragraph. The reduce operation computes a value
based on the given input relation. It can be used to compute the sum, average, maximum and
minimum of all the key values in the relation. Again this reduce primitive is implemented as
a multi-pass algorithm for better utilization of local memory. In each pass, the input data is
divided into multiple chunks and these chunks are evaluated in parallel. The size of the chunk

is equal to the local memory size which improves temporal locality.
Join

The join methods used in our system are hash join and nested loop join. In the nested loop
join, each thread block performs the join on a smaller chunk of the relations R and S (relations
involved in the join). The size of these chunks is again equal to the local memory size. Each
thread of the thread block performs join of one tuple of relation R to all the tuples of relation
S. The hash join on GPU is implemented as a parallel version of the radix hash join[16]. The
hash join works in two phases- Firstly, both R and S are divided into the same number of
chunks using radix bits partitioning. This partitioning is done in such a way so that most of
the S partitions fits into the local memory. In the second phase, these partitions of R and S are

joined in parallel using nested loop join method by making smaller relation as the inner relation.

4.1 Cost Estimations

The cost model used for estimating the cost of operators in the GPU is the one given by
Govindaraju et al.[9]. Tt involves cost of transferring the data from CPU host memory to GPU
device memory and the cost of executing the operator. The transfer time can be calculated as

the sum of two parts, the cost of invoking the transfer process and the cost of transferring the
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data. Now, to estimate the correct cost of executing an operator in GPU is very difficult since
GPU computation is highly parallel. The cost model takes into consideration the access time
of the local memory and the pure computation cost. The detail modelling of the cost model is

given in the Govindaraju et al.[9].
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Chapter 5
Problem Statement

A brief description of your chapter.

Given a query plan, which is produced by the query optimizer in the form of tree structure con-
taining nodes as operators and edges represent the precedence relation, output the assignment
and scheduling of these nodes for the heterogeneous environment consisting of CPU and GPU.
The problem is divided into two parts- one is solving it for chain plan trees (Figure 3) and
other is for non-chain plan trees (Figure 4). The query plan that we are using is the one given
by MonetDBJ[1] optimizer. The MonetDB optimizer gives the plan in the form MAL (Mon-
etDB Assembly Language) instructions. In MonetDB, queries are parsed into domain-specific
representations and optimized. The generated logical execution plans are then translated into
MonetDB Assembly Language (MAL) instructions, which are passed to the next layer. The
MonetDB uses three layers of abstraction. The middle layer provides a number of cost-based
optimizers for the MAL. The bottom layer is the database kernel, which provides access to
the data stored in Binary Association Tables (BATs). Each BAT is a table consisting of an
object-identifier and value columns, representing a single column in the database [12]. We
are converting these plans present in the form of MAL instructions(Figure 5.1) into the tree

structured plans(Figure 5.2).
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function user.s6 1{autoCommit=true}(A@:int,A1:flt,A2:dbl,A3:dbl,A4:dbl):void;
X 7 := sql.mvc();
X _8:bat[:old,:0ld] := sql.tid(X 7,"sys","lineiten");
X 11 := sql. blnd _idxbat(x 7,"sys", "11n31tem" ,"lineitem 1 partkey fkey",0);
X 14 := algebra. leftfetchJOLn(X 8,X 11);
X_17 := sql.bind(X_7,"sys" "part","p retailprice",0);
X 19 := X_17;
X_20 := sql.bind(X_7,"sys","part","p_size",0);

= X_20;

bat[ Dld rold]  := sql.tid(X_7,"sys","part");
= algebra subselect(X 22,X 15, AO AO true,true,false);
algebra. thetaqubqelect(x_19 X 23,A1 ":_")

X 25;

1 38) := algebra.join(X 14,X 27);
qql.bind(X_T,"sys","1ineitem","l_quantity",@);
algebra.leftfetchjoin(X_8,X_30);
algebra.leftfetchjoin(X_28,X _32);
batcalc. dbl(x 33);

35: bat[ oid,:oid] := X 15;

(X_3o ri 41) := algebra.join(x_14,x_35);

X 40 :

X 41 :

X 42 :

II m o nm = n u

algebra.leftfetchjoin(X 36,X 32);

batcalc. dbl(x 40)

sql.bind(X_7,"sys","part","p_partkey",0);
X_45:bat[:0id,:int] := algebra leftfetchjoinPath(r1_41,X 35,X 42);
(K_4o ri_ss, r2_55) 1= group.subgroupdone(X_45);

X_49:bat[:0id, :dbl] aggr.subavg(X_41,X 46,r1 55,true,true);
X _51:bat[:0id, :dbl] batcalc. /(X 49,A3);
X _52:bat[:old,:dbl] := batmmath.floor(X 51);
:= algebra.thetasubselect(X 52,A4,">=");
:= algebra.leftfetchjoin(X 53,X 49);
:bat[:o0id,:dbl] := batcalc./(X 55,A2);
:bat[:0id,:dbl] := batmmath.floor(X 56);
8,r1 _74) := algebra.join(X_34,X_57);
:= algebra.leftfetchjoin(X_28,X _8);
:= sql.bind(X_7,"sys","lineiten","1 extendedprice",@);
:bat[:0id,:flt] := algebra.leftfetchjoinPath(X 58,X 95,X 60);
= algebra selectNotNiL(X_65);
:= aggr.sum(X 66);
AportValue(l,”sys.L3","L3","real",24,0,9,x_6?,”");

Figure 5.1: MonetDB MAL Plan
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Chapter 6

Chain Structure Plan Trees

The chain tree structured plan is shown in Figure 6.1. These are the trees in which nodes have
exactly one child i.e. only one relation is involved in the database query, for example TPCH
benchmark query 1. There are two possible ways of finding the schedule to this type of plan
- dynamic programming approach and greedy approach. The dynamic programming approach
gives the optimal assignment of the plan nodes whereas the greedy approach uses the greedy
technique to find the assignment which may not be optimal but takes a lot lesser time than the

dynamic programming approach to output the assignment and schedule.

Sort

Aggregation

Projection
?
Filter

A

Figure 6.1: Chain Tree Structured Plan
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6.1 Greedy Approach

The greedy approach takes as input a chain tree structured plan with the information of nodes
and the precedence constraint between the nodes. It is also provided with the information of
CPU execution time, GPU execution time of the nodes and the data transfer time between the
CPU host memory and the GPU device memory, required if the node is executed in the other
device. It is a bottom-up approach. It starts assigning the nodes to either CPU or GPU from
the leaf node and goes in the upward direction. Since it is a greedy approach, it only looks for
short term profits i.e. if the current node is executed in the CPU then the next node will be
executed in the CPU if the CPU execution time of that node is lesser than the summation of

GPU execution time and the data transfer time and vice versa.

CPU 36
GPU 46 SOrt
Size 2

CPU 24

I Aggregation Aggregation

Size 40

CPU 60
GPU 44
Size 40

CPU 40

s Projection Projection
Size 40

CPU 96
Ghu104 Filter Filter
Size 240

A

A

Figure 6.2: Greedy Approach

Given a hypothetical plan tree (Figure 6.2 left-hand side), showing various nodes repre-
senting operators and ellipse representing the relation. The CPU execution time (secs), GPU
execution time (secs) and the amount of data processed by each node is given with the band-
width of PCle is 4 units/sec. The algorithm starts from the leaf nodes and the initial data
is present in the main memory. The leaf node (Filter node) is assigned to the CPU since the

CPU execution time (96 secs) is lesser than the summation of GPU execution time and data

16



transfer time (164 secs). Again the projection node is assigned to the CPU as the CPU execu-
tion time (40 secs) is lesser than the summation of GPU execution time and data transfer time
(42 secs). Now the group-by node is assigned to the GPU as the summation of GPU execution
time and the data transfer time is lesser than the CPU execution time. In the similar fashion,
we traverse the tree in the upward direction and keep assigning the nodes to either CPU or
GPU. The final output of the greedy algorithm is on the right-hand side of Figure 6.2 where
blue nodes will be running on CPU and orange nodes will be running on GPU. The complexity

of greedy algorithm is O(n) where n is the number of nodes in the plan tree.

6.2 Dynamic Programming Approach

The dynamic programming approach is a technique where each possible solution is explored
and the optimal assignment of the plan tree nodes is given as an output. The input to this
technique is same as in the case of greedy approach. It basically forms a tree type structure
to get the final output. It starts exploring nodes from the leaf nodes and at every node there
exist two possibilities, either the node is executed by CPU or GPU. In this way, the dynamic
programming approach iterates over all the nodes and finally outputs the optimal assignment
which will take the least time to execute the given plan.

Given the same plan tree as in greedy approach, applying the dynamic programming approach
will result in the assignment of the nodes into CPU or GPU, as given in Figure 6.3 right-hand
side. The complexity of this approach is O(2") which is very large as compared to greedy
approach but the number of nodes in a plan tree having single relation is usually not very large
so dynamic programming approach can be used. In this approach also, it starts from the filter
node and recursively calls the function- one with considering it to be executed on CPU and
other with GPU. It does that for all the nodes and measures the cost of each possible assignment
and finally outputs the one with the least cost. The dynamic programming approach execution
time is 234 secs whereas the greedy approach execution time is 242 secs so the difference is not
significant in this example but this is the best possible way of executing the given plan in the

CPU-GPU heterogeneous environment.

17
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Chapter 7

Non-Chain Structure Plan Trees

The non-chain plan tree is shown in Figure 7.1. These are the trees in which the nodes can
have more than one child i.e. more than one relation is present in the query. The problem of
scheduling nodes of this type of tree structure into multiple devices can be mapped into the
problem of scheduling task graphs[5]. The task graph represents the graph where nodes denote
computational tasks, and edges model precedence constraints between tasks. The task graph
scheduling is an activity that consists of mapping a task graph onto a target platform. For
each of the task the algorithm decides the assignment (node on either CPU or GPU) and the
scheduling (sequence of running these nodes on CPU and GPU). The aim is to get the most

effective execution of the task graph.

The plan trees can be directly mapped into the task graphs in which operator nodes can
be mapped into computational tasks and the edges represents precedence constraints. Each
node label shows computation cost of the task for various resources (CPU and GPU) and each
edge label shows the amount of data needed to sent from one node to other. The problem
of scheduling task graph is a NP-Hard problem [15][7] so finding the optimal assignment and

schedule for non-chain structured plan trees is also NP-Hard problem.
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Aggregation

Projection
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Figure 7.1: Non-chain Tree Structured Plan

7.1 HEFT (Heterogeneous Earliest Finish Time)[14]

HEFT[14] algorithm is a well-known technique used for scheduling task graphs for heterogeneous
computing. We are using this HEFT technique for getting an assignment and scheduling of
the nodes in the heterogeneous environment and have found it to be performing very close to

optimal. The HEFT algorithm takes the following inputs-

e A graph G = (V, E) where V is the set of n nodes and E is the set of e edges between
the nodes. Each edge (i,7) € F represents the precedence constraint such that node n;

should finish its execution before node n;.

e A v x v Data matrix consisting of communication data, where Data,) is the amount of

data output by node n, and sent to node n,.

o A set R of r heterogeneous processors, a matrix B of size r X r consisting of data transfer

rates and the communication startup cost s.

20



e A vxrmatrix C where C(; ;) gives the estimated execution time of node n; on processor j.

HEFT takes into consideration that the computation can also be overlapped with the commu-
nication and assumes that the intraprocessor communication cost is negligible as compared to
interprocessor communication cost. The HEFT algorithm works in two phases- task prioritizing
phase and processor selection phase. In task prioritizing phase, each node is given a priority
which is based on the mean computation and mean communication costs and then the list of
nodes is sorted on the basis of this priority. This ordering provides the topological order of
nodes so preserving the precedence constraint among nodes. In the processor selection phase,
the nodes are assigned to the processors by using insertion-based policy i.e. by inserting the
node between two already scheduled nodes on the processor by looking at the idle time-slot
between the scheduled nodes. Given the plan plan of Figure 7.1 and applying HEFT algorithm
to get the assignment of nodes to either CPU or GPU and scheduling of the nodes. The com-
putation cost of each node is shown in Figure 7.2 with the numbering of nodes as in Figure 7.3.
The result is shown in Figure 7.3 where orange nodes will be running on CPU and blue nodes
on GPU. The hand-tuned scheduling and assignment of nodes to CPU or GPU gives the same
assignment as given by HEFT.

1 165 150
2 130 144
gl 110 95

4 80 104
5 2544 9857
6 1245 2147
7 347 114
8 67 61

9 987 3547
10 478 2475
11 144 75

Figure 7.2: Computation Costs
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Chapter 8
Intra-Operator Parallelism

The problem with smaller queries and queries involving single relation is that one of CPU or
GPU sits idle most of the time so we are exploring intra-operator parallelism in that aspect.
The intra-operator parallelism means the same operator runs on CPU and GPU simultaneously.
In this work, the data parallelism is used i.e. dividing the amount of data to be processed by
that operator between CPU and GPU in such a way that the execution time in CPU is equal
to the summation of GPU execution time and the data transfer time. The output given by
GPU is transferred to CPU and merged with the output given by CPU and also if the next
operator is required to be executed in GPU then the output of CPU is transferred to GPU

device memory from host memory and the merging is done by the GPU.
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Chapter 9

Resource Configurability

9.1 Resource Configurable Hash Join

The hash join implementation for the GPU was not resource configurable i.e. it is not possible
to specify the amount of resources to give to various kernels involved in the hash join algorithm.
The code base used for operators is the one given by Govindaraju [9]. Specifically, we want to
fix the number of thread blocks assigned to these kernels so that multiple kernels can execute
at the same time. The previous implementation (i.e. the implementation of hash join as given
in [9]) resource allocation depends on the amount of data size (cardinality) of relations involved
in the join. Hash join involves two phases- the first phase is called the build phase whereas
the second phase is called probe phase. In the build phase, the hash table is build using one
of the relations involved in the join, usually the smaller relation. The probe phase involves the
scanning of the other larger relation and finding the matching tuples by looking at the hash

tables of the smaller relation.

The hash join GPU implementation is the radix based hash join which partitions both the
input relations. The partitioning is done using multiple passes until we get the smaller par-
titions such that these partitions are not bigger than the shared memory size of the GPU.
In every pass, the previous implementation assumes to have that many thread blocks, for the
kernel involved in partitioning, as the number of partitions that are needed to be processed.
The partitioning is done using histograms and each thread build its own histogram on the data
that it processes. Then those histograms are combined to create block level histograms and
finally the global histograms pertaining to complete data. In previous implementation, the
kernels were written assuming there is at least one thread block working on single partition and

now the current implementation will have the same number of partitions but a single thread
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block will be able to work on more than one partition. This has been done for all the kernels
that were present in hash join implementation, the ones that are partitioning the data and the

others that are doing the probing.

After the partition phase, the nested loop join is performed on the partition pair of the re-
lations to get the desired result. The graph in Figure 9.1 shows the performance of resource
configurable hash join after changing the number of thread blocks keeping the number of threads
same as given by the previous implementation. The experiments are performed on Nvidia tesla

K20X having specification as given in the following table.

Number of SMs 14
Cores per SM 192
Number of registers per SM 64K
Shared memory per SM 48K
Device memory 6GB
Max Number of threads per SM 2048
Max number of thread blocks per SM | 16

Table 9.1: System Configurations Nvidia K20

The resource configurable hash join is performed on relations, both of which having 2 million
tuples. The time taken by the algorithm is shown on the y-axis and the x-axis shows the number
of thread blocks given to all the kernels involved in the algorithm. The number of threads per
thread block is the same as chosen by the previous implementation as it better utilizes the

shared memory.
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Figure 9.1: Resource Configurable Hash Join

9.2 Resource Configurable Prefix Scan

The prefix scan implementation (i.e. the implementation of prefix scan as given in [9]) was also
not resource configurable. The prefix scan (also known as prefix sum) performed on an array of
integers returns another array of same size in which each element is the sum of all the integers
that are present before that element in the given original array. Given a binary associative
operator @ and an array of n elements [ao, a1, 02, A3..., Oy — 1] , the prefix scan returns an array
[(ao), (ap ® ay), (ag ® a1 ® az),...,(ag B ay ® ... B a, — 1)}

The algorithm implemented is based on the scan algorithm given by Hillis and Steele [?
|. The resource configurable implementation of it takes O(logn) steps to finish. Each step
performs the kernel invocation on same amount of resources. The performance of prefix scan
is shown in Figure 9.2 (prefix scan on 20 million tuples). The number of threads per thread
block is taken as 1024 for this cases.
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Chapter 10

Performance Evaluation

10.1 Experimental Setup

For evaluating the performance of algorithms, we are using a machine with an Intel Xeon CPU
E5-2620 v2 with six cores @2.10GHz, 24 GB main memory, and a NVIDIA Tesla K40m having
10 GB of device memory. Apart from these, on a software side cuda is used for GPU program-
ming and openmp[4] for parallelism in CPU. We are doing the experiments on modified TPCH
queries as our system is not capable of dealing with strings and the database size is 10 GB.

Before starting the experiments, the database is pre-loaded into the main-memory.

10.2 Experiments

10.2.1 Chain Plan Trees

The dynamic programming algorithm gives us the optimal solution whereas greedy algorithm
works for the short term benefits. The assignment of nodes produced by greedy algorithm is
very close to the assignment produced by dynamic programming algorithm whereas the time
taken to produce these assignment is way more in case of dynamic programming algorithm. In
most of the cases, the pure CPU and the pure GPU time is more than the hybrid execution
time. The queries QS1,..QS6 are shown in the appendix and the results are shown in Figure

10.1.
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Figure 10.1: Chain Plan Tree Performance

10.2.2 Non-chain Plan Trees
The HEFT approach is applied to various modified TPCH benchmark queries to get the CPU-

GPU assignment and scheduling and the performance is compared with the existing database
system MonetDB, our CPU and GPU implementations using operator algorithms as given in
[10][9]. The performance of CPU-GPU implementation using HEFT is shown in Figure 10.2.
The CPU-GPU implementation performs very well as compared to CPU or GPU implementa-
tion. Its performance with MonetDB is comparable as in some cases CPU-GPU implementation
outperforms MonetDB where as in other cases it is close to MonetDB. The MonetDB perfor-
mance is much better as compared to our CPU implementation even though both are using
multiple cores, it is because we have not used MonetDB operator implementation but the im-
plementation given in [10][9]. By using MonetDB operators implementation the CPU-GPU
performance can be increased even more. The execution of these queries is done by using
streams to overlap the execution time with the data transfer time, in this way the data transfer

time is reduced.
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Figure 10.2: HEFT Performance

10.2.3 Intra-Operator Parallelism

The intra-operator parallelism is done for four operators- filter, projection, hash join and group-
by. These operators are implemented to use both CPU and GPU to execute a single operation.
The amount of data to be processed in divided among CPU and GPU in such a way that the
execution time of CPU is equal to the summation of the execution time of GPU and the data

transfer time.
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Figure 10.3: Intra-Operator Parallelism

the devices are used in CPU-GPU implementation.

31

11200

Hash Join

1900




Chapter 11
Conclusions

A brief description of your chapter.

e We have automated the process of converting the MonetDB plan which is in the form of

MAL instruction into the tree structured plan.

e The HEFT algorithm gives performance close to MonetDB and better than standalone

CPU or GPU implementations for non-chain structured plan trees.

e For chain plan trees, the dynamic programming approach gives the optimal assignment
and for database application the greedy approach performs close to dynamic programming

approach.

e The problem of data transfer from CPU host memory to GPU device memory can be
solved with the help of streams by overlapping the computations with the communication

cost but still the initial transfer could be bottleneck in certain cases.

e The intra-operator parallelism can be used for smaller queries and queries involving single

relations to make sure the other device is not sitting idle.
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Chapter 12

Future Work

A brief description of your chapter.

e Integrating other algorithms like nested loop join, sort merge join, index nested loop join,

indexes on GPU etc. to the system.

e Currently we are using the CPU optimized plan so the future work also includes designing

an optimizer which takes into consideration all the devices present in the system.

e Another bottleneck for performance is the operator implementations which are not using
new features of cuda so changing the current operator implementations to use newer

features of cuda.

e Integrating MonetDB operator implementation to our existing system.
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Appendix A

Queries

The queries which we run for chain plan trees are the following-

Listing 1 Query QS1

select sum(l_quantity) as sum_qty, l_linenumber
from lineitem where 1_suppkey <= 2000
group by 1l_linenumber

order by sum_qty;

Listing 2 Query QS2

select sum(c_acctbal) as sum_qty, c_nationkey
from customer

where c_nationkey <= 10 and

c_custkey between 1000 and 500000

group by c_nationkey;

Listing 3 Query QS3

select count(*)
from ( select o_totalprice
from orders
where o_orderkey between 2000 and 20000
and o_shippriority = 0O
group by o_totalprice) as R;
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Listing 4 Query Q5S4

select sum(l_extendedprice) as sum,

count (*) as cnt

from lineitem

where 1_suppkey <= 50000 and 1l_partkey <= 1000
group by 1_linenumber

order by sum;

Listing 5 Query QS5

select avg(p_retailprice) as avg,
sum(p_retailprice) as sum,

count (*) as cnt from part

where p_size >= 1 and p_partkey
between 5000 and 50000

group by p_size;

Listing 6 Query QS6

select max(ps_availqty) from partsupp
where ps_suppkey between 200 and 20000 and
ps_partkey >= 10000 and

ps_supplycost > 999

group by ps_supplycost;
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