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Abstract

Graphics processors (GPUs) have emerged as a powerful co-processor for general-purpose com-

putation. GPUs have been very widely used for various applications including database query

execution. GPUs have an order of magnitude higher computation power as well as the memory

bandwidth but they have a bottleneck of limited GPU device memory and transferring data be-

tween CPU main memory and GPU device memory. The database optimizer generates a query

plan i.e. a tree structure which contains operators as nodes and edges represent the dependency

between the nodes. The problem is how to divide the nodes of this tree-structured query plan,

given by MonetDB[1], into the heterogeneous environment (CPU and GPU). We have proposed

greedy approach and dynamic programming approach for the chain trees i.e., trees in which

nodes have exactly one child. We have also verified that HEFT (Heterogeneous Earliest Finish

Time) algorithm[14] works very well for non-chain trees i.e., trees in which nodes have many

child nodes. We have also implemented operators for hybrid environment (CPU-GPU) i.e.,

running a single operator in the hybrid environment by using data parallelism. The thesis also

includes the resource configurable implementation of filter and hash join operators.
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Chapter 1

Introduction

GPUs have evolved into general purpose computing with the emergence of efficient parallel

programming models, such as CUDA[2]. The use of such heterogeneous computing devices is

highly recognized as the only promising way to achieve application speedups. GPUs high com-

putational power gives us the possibility of accelerating execution of database queries. However,

there is still a significant challenge for using GPUs in the most effective manner to speed up

the database query execution. The database query (Query 1) is converted into execution plan

tree, as shown in Figure 1.1, which is given by the database query optimizer. In this plan tree,

relations are specified in ellipses and rectangles show the operators at the different level. The

optimizer finds this optimal plan tree such that the execution time of the query is minimal. An

optimizer uses its cost model to estimate the cost of different query plans generated for a query.

This cost model give its estimated cost based on the input selectivity (number of tuples in the

input), organization of data on the disk, indexes available, the operator algorithm and other

metadata. The database query optimizer used by us is the one given by MonetDB[1] as it uses

columnar storage. The plan given by MonetDB is a CPU-optimized plan and we are using this

plan to run it in a heterogeneous environment. The plan given by MonetDB is in the form of

MAL (MonetDB Assembly Language)[1] instruction and we are converting these instructions

into the tree-structured plan. The problem we are trying to solve is the optimal assignment

and scheduling of plan nodes into the CPU and GPU so as to get the minimum execution time.
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Select sum(l extendedprice) as sum , l orderkey

From lineitem, orders, customer

Where l orderkey = o orderkey and o custkey = c custkey

and c acctbal ≥ 5000 and o totalprice ≥ 10000

group by l orderkey;
Query 1

Figure 1.1: Plan Tree

In this report we have given two approaches for solving this problem for chain trees- greedy

scheduling and dynamic programming scheduling. The dynamic programming scheduling gives
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the optimal assignment of nodes into CPU or GPU which works slightly better than the greedy

approach but the amount of time taken to output the scheduling is much more in case of

dynamic programming approach. For non-chain trees, we have verified that the execution of

the plan in CPU-GPU environment such that the assignment and scheduling of the plan nodes

is done by using HEFT (Heterogeneous Earliest Finish Time) algorithm[14] works very well

as compared to CPU only execution. Until now the operator was either running in CPU or

GPU but we have also explored the prospect of running intra-parallelism operators i.e. running

a operator in CPU-GPU environment. The operators are implemented to use both CPU and

GPU in single run by dividing the amount of data processed by that operator. This gives better

performance for queries where it’s not possible to use both CPU and GPU simultaneously to

execute the query as in case of chain tree structured plans. It can also be used for certain nodes

in non-chain plan trees if one of CPU or GPU is sitting idle.
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Chapter 2

Background and Preliminaries

The database storage in our system is similar to that of MonetDB[1]. There is a significant devi-

ation in the storage model of MonetDB from traditional database systems. The relational tables

are represented using vertical fragmentations, by storing each column in a separate (id,value)

table, also called a BAT (Binary Association Table). These BATs are stored in the separate

files. All the intermediate results are also stored in the form of BATs. The reasons for choosing

MonetDB for comparison as well as the storage model are following -

• Before executing the algorithm on the GPU, we have to transfer input data from the CPU

host memory to the GPU device memory. The transfer operation from CPU main memory

to GPU device memory and vice versa is costly as it happens on limited bandwidth PCIe

bus. The columnar storage aids us to only send the required part of relation to the device

memory hence reducing the transfer cost.

• It is an in-memory database. For executing any operator on GPU, the data should be in

GPU device memory as GPU cannot directly access directly main memory to do disk I/O.

Therefore it is necessary to consider that the database is present in the main-memory.

• Since less data is required for any operator, better cache and shared memory optimizations

are possible.

2.1 Background on GPU

GPUs are originally designed as co-processors for CPUs to process graphics tasks. In re-

cent years, they have evolved into a powerful accelerator for many applications such as High-

Performance Computing (HPC) and deep learning. Though the detailed components of GPUs
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from different vendors vary, their general architectural designs can be abstracted in the same

model as shown in Figure 2.1. For illustration purposes, we use the terminology of Nvidia

GPU. GPU consists of many streaming multiprocessors(SMs) and each SM consists of many

SIMD (Single Instruction Multiple Data) Lanes. At any given clock cycle, all SIMD lanes of a

particular SM execute the same instruction but operates on different data. The GPU supports

thousands of concurrent threads. The threads on each SM are organized into groups called as

warps. Warps are dynamically scheduled on SMs. Each thread in a particular warp (typically

group of 32 threads) execute same instruction at a clock cycle. When a warp is scheduled on

the SM, then each thread in a warp gets one SIMD lane to get executed and as there are as

many numbers of SIMD lanes as a number of threads in a warp and all of them can execute at

the same clock cycle.

Figure 2.1: GPU Architecture
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The kernel is a basic function which executes on GPU. It can be written in CUDA[2] or

OpenCL[3]. Whenever the host thread launches (calls) the kernel, it is scheduled on GPU and

gets executed on the GPU with control returning to the host thread i.e launching of the kernels

by the host thread on the GPU is non-blocking. Therefore host thread could launch multiple

kernels even though the first kernel has not even started execution. We can specify the number

of threads that we want to launch for that kernel. The number of threads is specified in the

form of grid size and the number of threads. The grid is the collection of thread blocks whereas

each thread block is the collection of threads.Each thread runs the instructions in the kernel

independent of each other, therefore each thread requires their own set of registers for the

variables. The programmer could write the kernel in such a way that each thread can allocate

memory for the variables on the on-chip cache (shared memory) so that the thread does not

have to access the device memory repeatedly for the variable. Shared memory is allocated on

a per thread block basis, therefore, all the threads belonging to same thread block can access

shared memory allocated for that thread block. Each SM has fixed a number of registers, fixed

amount of shared memory, which is a software controlled cache in contrast to CPU which has

hardware control cache. Each SM can have at the most certain number of threads and thread

block to execute. A thread block of a kernel is a schedulable unit on SMs i.e. either all the

threads of a thread block are scheduled on SMs or none of them. Once the thread block is

scheduled to SM, it will not be preempted from that SM until all of its threads have completed

their execution.

Stream
The stream is a sequence of operations that execute in issue-order on the GPU. The operation

in a stream start execution only when earlier operations in that stream have completed their ex-

ecution. The operations in different streams may run concurrently or they may be interleaved.

The operation could be a kernel execution or a memory transfer operation from host to device

memory or from device to host memory. We are using streams extensively for asynchronous

data transfers between these memories as well as for concurrent kernel executions in cases where

it is possible.

In figure 2.2[8], kernel K1, P1 and Q1 can be executed concurrently while kernel K2 will only

be scheduled when K1 is executed i.e. when all the thread blocks of kernel K1 are executed.

A stream is said to be executed when all its kernels have completed their execution. A stream

is said to be activated when it is ready to schedule its front kernel on the GPU. In Figure 2.2,

stream 1 is ready to schedule kernel K1 on the GPU. Once the GPU scheduler has scheduled

all the thread blocks of kernel K1 on the GPU then Stream 1 will be deactivated as it is not

6



ready to schedule its kernel K2 on the GPU. This is because stream 1 is waiting for kernel K1

to be executed. Streams can be created in the following two ways:

1. By calling CUDA function cudaStreamCreate explicitly which launches the kernel in

different stream.

2. By creating POSIX threads, each thread will have its respective default stream. Kernels

launched by different pthreads will execute in different streams.

Figure 2.2: Stream Execution
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Chapter 3

Related Work

GPUs have been very widely available for last decade which resulted in data co-processing on

these GPUs. Govindaraju et al.[10][9], first presented their work on relational operators running

on graphic cards. They investigated relational query processing by implementing complete set

of database operators for the GPUs as well as for CPU so that their storage model i.e. columnar

storage could be run on this system. We are also using these operator implementations in our

system. Manegold et al. developed a hardware-oblivious system, Ocelot[11], which can execute

a complete query on either CPU or GPU but there is no CPU-GPU heterogeneous computing

involved. There has been some other work[13][6] which mostly talks about query executions on

GPU.
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Chapter 4

Database Operators on GPU

The implementation of various database operators on CPU and GPU has been taken from the

work presented by Govindaraju et al.[10][9]. These operators are implemented for CPU using

openmp[4] and for GPU using CUDA[2]. Following are the implementation details of various

operators on GPU-

Selection

The selection operator outputs a subset of tuples from the relation based on a certain condition

i.e. tuples which satisfy the condition remains in the output and others are discarded. Selection

is implemented using map, prefix scan and scatter primitives. First, the map primitive pro-

cesses the input tuples (array containing the column values) that results in the corresponding

0-1 array (0 represents the column value does not satisfy the condition and 1 represents the

column value satisfy the condition). Then the prefix sum is computed on that array and stored

into another array. Lastly the result is scattered using scatter primitive to the output array

according to the previous result arrays.

Projection

The projection operator extracts a column of the relation based on the given record IDs. It

is implemented using gather primitive. A gather primitive performs an indexed reads from a

relation. The read location for each output tuple is defined by a location array. It uses sorting

if the elimination of the duplicates is required.

9



Order-by

The order-by operator is implemented using sort primitive specifically quick sort. First, the

algorithm divides the relation into multiple chunks using a given set of randomly chosen pivots.

This splitting process goes recursively until the chunk size is smaller than the local memory

size. Lastly these chunks are sorted in parallel using the bitonic sort method.

Group-by and Aggregation

The sort primitive is used for grouping and reduce primitive is used for aggregation. The

sorting on GPU is explained in the previous paragraph. The reduce operation computes a value

based on the given input relation. It can be used to compute the sum, average, maximum and

minimum of all the key values in the relation. Again this reduce primitive is implemented as

a multi-pass algorithm for better utilization of local memory. In each pass, the input data is

divided into multiple chunks and these chunks are evaluated in parallel. The size of the chunk

is equal to the local memory size which improves temporal locality.

Join

The join methods used in our system are hash join and nested loop join. In the nested loop

join, each thread block performs the join on a smaller chunk of the relations R and S (relations

involved in the join). The size of these chunks is again equal to the local memory size. Each

thread of the thread block performs join of one tuple of relation R to all the tuples of relation

S. The hash join on GPU is implemented as a parallel version of the radix hash join[16]. The

hash join works in two phases- Firstly, both R and S are divided into the same number of

chunks using radix bits partitioning. This partitioning is done in such a way so that most of

the S partitions fits into the local memory. In the second phase, these partitions of R and S are

joined in parallel using nested loop join method by making smaller relation as the inner relation.

4.1 Cost Estimations

The cost model used for estimating the cost of operators in the GPU is the one given by

Govindaraju et al.[9]. It involves cost of transferring the data from CPU host memory to GPU

device memory and the cost of executing the operator. The transfer time can be calculated as

the sum of two parts, the cost of invoking the transfer process and the cost of transferring the

10



data. Now, to estimate the correct cost of executing an operator in GPU is very difficult since

GPU computation is highly parallel. The cost model takes into consideration the access time

of the local memory and the pure computation cost. The detail modelling of the cost model is

given in the Govindaraju et al.[9].
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Chapter 5

Problem Statement

A brief description of your chapter.

Given a query plan, which is produced by the query optimizer in the form of tree structure con-

taining nodes as operators and edges represent the precedence relation, output the assignment

and scheduling of these nodes for the heterogeneous environment consisting of CPU and GPU.

The problem is divided into two parts- one is solving it for chain plan trees (Figure 3) and

other is for non-chain plan trees (Figure 4). The query plan that we are using is the one given

by MonetDB[1] optimizer. The MonetDB optimizer gives the plan in the form MAL (Mon-

etDB Assembly Language) instructions. In MonetDB, queries are parsed into domain-specific

representations and optimized. The generated logical execution plans are then translated into

MonetDB Assembly Language (MAL) instructions, which are passed to the next layer. The

MonetDB uses three layers of abstraction. The middle layer provides a number of cost-based

optimizers for the MAL. The bottom layer is the database kernel, which provides access to

the data stored in Binary Association Tables (BATs). Each BAT is a table consisting of an

object-identifier and value columns, representing a single column in the database [12]. We

are converting these plans present in the form of MAL instructions(Figure 5.1) into the tree

structured plans(Figure 5.2).
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Figure 5.1: MonetDB MAL Plan
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Figure 5.2: Tree Plan
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Chapter 6

Chain Structure Plan Trees

The chain tree structured plan is shown in Figure 6.1. These are the trees in which nodes have

exactly one child i.e. only one relation is involved in the database query, for example TPCH

benchmark query 1. There are two possible ways of finding the schedule to this type of plan

- dynamic programming approach and greedy approach. The dynamic programming approach

gives the optimal assignment of the plan nodes whereas the greedy approach uses the greedy

technique to find the assignment which may not be optimal but takes a lot lesser time than the

dynamic programming approach to output the assignment and schedule.

Figure 6.1: Chain Tree Structured Plan
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6.1 Greedy Approach

The greedy approach takes as input a chain tree structured plan with the information of nodes

and the precedence constraint between the nodes. It is also provided with the information of

CPU execution time, GPU execution time of the nodes and the data transfer time between the

CPU host memory and the GPU device memory, required if the node is executed in the other

device. It is a bottom-up approach. It starts assigning the nodes to either CPU or GPU from

the leaf node and goes in the upward direction. Since it is a greedy approach, it only looks for

short term profits i.e. if the current node is executed in the CPU then the next node will be

executed in the CPU if the CPU execution time of that node is lesser than the summation of

GPU execution time and the data transfer time and vice versa.

Figure 6.2: Greedy Approach

Given a hypothetical plan tree (Figure 6.2 left-hand side), showing various nodes repre-

senting operators and ellipse representing the relation. The CPU execution time (secs), GPU

execution time (secs) and the amount of data processed by each node is given with the band-

width of PCIe is 4 units/sec. The algorithm starts from the leaf nodes and the initial data

is present in the main memory. The leaf node (Filter node) is assigned to the CPU since the

CPU execution time (96 secs) is lesser than the summation of GPU execution time and data

16



transfer time (164 secs). Again the projection node is assigned to the CPU as the CPU execu-

tion time (40 secs) is lesser than the summation of GPU execution time and data transfer time

(42 secs). Now the group-by node is assigned to the GPU as the summation of GPU execution

time and the data transfer time is lesser than the CPU execution time. In the similar fashion,

we traverse the tree in the upward direction and keep assigning the nodes to either CPU or

GPU. The final output of the greedy algorithm is on the right-hand side of Figure 6.2 where

blue nodes will be running on CPU and orange nodes will be running on GPU. The complexity

of greedy algorithm is O(n) where n is the number of nodes in the plan tree.

6.2 Dynamic Programming Approach

The dynamic programming approach is a technique where each possible solution is explored

and the optimal assignment of the plan tree nodes is given as an output. The input to this

technique is same as in the case of greedy approach. It basically forms a tree type structure

to get the final output. It starts exploring nodes from the leaf nodes and at every node there

exist two possibilities, either the node is executed by CPU or GPU. In this way, the dynamic

programming approach iterates over all the nodes and finally outputs the optimal assignment

which will take the least time to execute the given plan.

Given the same plan tree as in greedy approach, applying the dynamic programming approach

will result in the assignment of the nodes into CPU or GPU, as given in Figure 6.3 right-hand

side. The complexity of this approach is O(2n) which is very large as compared to greedy

approach but the number of nodes in a plan tree having single relation is usually not very large

so dynamic programming approach can be used. In this approach also, it starts from the filter

node and recursively calls the function- one with considering it to be executed on CPU and

other with GPU. It does that for all the nodes and measures the cost of each possible assignment

and finally outputs the one with the least cost. The dynamic programming approach execution

time is 234 secs whereas the greedy approach execution time is 242 secs so the difference is not

significant in this example but this is the best possible way of executing the given plan in the

CPU-GPU heterogeneous environment.

17



Figure 6.3: Dynamic Programming Approach
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Chapter 7

Non-Chain Structure Plan Trees

The non-chain plan tree is shown in Figure 7.1. These are the trees in which the nodes can

have more than one child i.e. more than one relation is present in the query. The problem of

scheduling nodes of this type of tree structure into multiple devices can be mapped into the

problem of scheduling task graphs[5]. The task graph represents the graph where nodes denote

computational tasks, and edges model precedence constraints between tasks. The task graph

scheduling is an activity that consists of mapping a task graph onto a target platform. For

each of the task the algorithm decides the assignment (node on either CPU or GPU) and the

scheduling (sequence of running these nodes on CPU and GPU). The aim is to get the most

effective execution of the task graph.

The plan trees can be directly mapped into the task graphs in which operator nodes can

be mapped into computational tasks and the edges represents precedence constraints. Each

node label shows computation cost of the task for various resources (CPU and GPU) and each

edge label shows the amount of data needed to sent from one node to other. The problem

of scheduling task graph is a NP-Hard problem [15][7] so finding the optimal assignment and

schedule for non-chain structured plan trees is also NP-Hard problem.
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Figure 7.1: Non-chain Tree Structured Plan

7.1 HEFT (Heterogeneous Earliest Finish Time)[14]

HEFT[14] algorithm is a well-known technique used for scheduling task graphs for heterogeneous

computing. We are using this HEFT technique for getting an assignment and scheduling of

the nodes in the heterogeneous environment and have found it to be performing very close to

optimal. The HEFT algorithm takes the following inputs-

• A graph G = (V,E) where V is the set of n nodes and E is the set of e edges between

the nodes. Each edge (i, j) ∈ E represents the precedence constraint such that node ni

should finish its execution before node nj.

• A v× v Data matrix consisting of communication data, where Data(a,b) is the amount of

data output by node na and sent to node nb.

• A set R of r heterogeneous processors, a matrix B of size r× r consisting of data transfer

rates and the communication startup cost s.

20



• A v×r matrix C where C(i,j) gives the estimated execution time of node ni on processor j.

HEFT takes into consideration that the computation can also be overlapped with the commu-

nication and assumes that the intraprocessor communication cost is negligible as compared to

interprocessor communication cost. The HEFT algorithm works in two phases- task prioritizing

phase and processor selection phase. In task prioritizing phase, each node is given a priority

which is based on the mean computation and mean communication costs and then the list of

nodes is sorted on the basis of this priority. This ordering provides the topological order of

nodes so preserving the precedence constraint among nodes. In the processor selection phase,

the nodes are assigned to the processors by using insertion-based policy i.e. by inserting the

node between two already scheduled nodes on the processor by looking at the idle time-slot

between the scheduled nodes. Given the plan plan of Figure 7.1 and applying HEFT algorithm

to get the assignment of nodes to either CPU or GPU and scheduling of the nodes. The com-

putation cost of each node is shown in Figure 7.2 with the numbering of nodes as in Figure 7.3.

The result is shown in Figure 7.3 where orange nodes will be running on CPU and blue nodes

on GPU. The hand-tuned scheduling and assignment of nodes to CPU or GPU gives the same

assignment as given by HEFT.

Figure 7.2: Computation Costs
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Figure 7.3: HEFT Algorithm
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Chapter 8

Intra-Operator Parallelism

The problem with smaller queries and queries involving single relation is that one of CPU or

GPU sits idle most of the time so we are exploring intra-operator parallelism in that aspect.

The intra-operator parallelism means the same operator runs on CPU and GPU simultaneously.

In this work, the data parallelism is used i.e. dividing the amount of data to be processed by

that operator between CPU and GPU in such a way that the execution time in CPU is equal

to the summation of GPU execution time and the data transfer time. The output given by

GPU is transferred to CPU and merged with the output given by CPU and also if the next

operator is required to be executed in GPU then the output of CPU is transferred to GPU

device memory from host memory and the merging is done by the GPU.
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Chapter 9

Resource Configurability

9.1 Resource Configurable Hash Join

The hash join implementation for the GPU was not resource configurable i.e. it is not possible

to specify the amount of resources to give to various kernels involved in the hash join algorithm.

The code base used for operators is the one given by Govindaraju [9]. Specifically, we want to

fix the number of thread blocks assigned to these kernels so that multiple kernels can execute

at the same time. The previous implementation (i.e. the implementation of hash join as given

in [9]) resource allocation depends on the amount of data size (cardinality) of relations involved

in the join. Hash join involves two phases- the first phase is called the build phase whereas

the second phase is called probe phase. In the build phase, the hash table is build using one

of the relations involved in the join, usually the smaller relation. The probe phase involves the

scanning of the other larger relation and finding the matching tuples by looking at the hash

tables of the smaller relation.

The hash join GPU implementation is the radix based hash join which partitions both the

input relations. The partitioning is done using multiple passes until we get the smaller par-

titions such that these partitions are not bigger than the shared memory size of the GPU.

In every pass, the previous implementation assumes to have that many thread blocks, for the

kernel involved in partitioning, as the number of partitions that are needed to be processed.

The partitioning is done using histograms and each thread build its own histogram on the data

that it processes. Then those histograms are combined to create block level histograms and

finally the global histograms pertaining to complete data. In previous implementation, the

kernels were written assuming there is at least one thread block working on single partition and

now the current implementation will have the same number of partitions but a single thread
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block will be able to work on more than one partition. This has been done for all the kernels

that were present in hash join implementation, the ones that are partitioning the data and the

others that are doing the probing.

After the partition phase, the nested loop join is performed on the partition pair of the re-

lations to get the desired result. The graph in Figure 9.1 shows the performance of resource

configurable hash join after changing the number of thread blocks keeping the number of threads

same as given by the previous implementation. The experiments are performed on Nvidia tesla

K20X having specification as given in the following table.

Number of SMs 14

Cores per SM 192

Number of registers per SM 64K

Shared memory per SM 48K

Device memory 6GB

Max Number of threads per SM 2048

Max number of thread blocks per SM 16

Table 9.1: System Configurations Nvidia K20

The resource configurable hash join is performed on relations, both of which having 2 million

tuples. The time taken by the algorithm is shown on the y-axis and the x-axis shows the number

of thread blocks given to all the kernels involved in the algorithm. The number of threads per

thread block is the same as chosen by the previous implementation as it better utilizes the

shared memory.
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Figure 9.1: Resource Configurable Hash Join

9.2 Resource Configurable Prefix Scan

The prefix scan implementation (i.e. the implementation of prefix scan as given in [9]) was also

not resource configurable. The prefix scan (also known as prefix sum) performed on an array of

integers returns another array of same size in which each element is the sum of all the integers

that are present before that element in the given original array. Given a binary associative

operator ⊕ and an array of n elements
[
a0, a1, a2, a3..., an− 1

]
, the prefix scan returns an array[

(a0), (a0 ⊕ a1), (a0 ⊕ a1 ⊕ a2), ..., (a0 ⊕ a1 ⊕ ....⊕ an − 1)
]
.

The algorithm implemented is based on the scan algorithm given by Hillis and Steele [?

]. The resource configurable implementation of it takes O(log n) steps to finish. Each step

performs the kernel invocation on same amount of resources. The performance of prefix scan

is shown in Figure 9.2 (prefix scan on 20 million tuples). The number of threads per thread

block is taken as 1024 for this cases.
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Figure 9.2: Resource Configurable Prefix Scan(20M)
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Chapter 10

Performance Evaluation

10.1 Experimental Setup

For evaluating the performance of algorithms, we are using a machine with an Intel Xeon CPU

E5-2620 v2 with six cores @2.10GHz, 24 GB main memory, and a NVIDIA Tesla K40m having

10 GB of device memory. Apart from these, on a software side cuda is used for GPU program-

ming and openmp[4] for parallelism in CPU. We are doing the experiments on modified TPCH

queries as our system is not capable of dealing with strings and the database size is 10 GB.

Before starting the experiments, the database is pre-loaded into the main-memory.

10.2 Experiments

10.2.1 Chain Plan Trees

The dynamic programming algorithm gives us the optimal solution whereas greedy algorithm

works for the short term benefits. The assignment of nodes produced by greedy algorithm is

very close to the assignment produced by dynamic programming algorithm whereas the time

taken to produce these assignment is way more in case of dynamic programming algorithm. In

most of the cases, the pure CPU and the pure GPU time is more than the hybrid execution

time. The queries QS1,..QS6 are shown in the appendix and the results are shown in Figure

10.1.
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Figure 10.1: Chain Plan Tree Performance

10.2.2 Non-chain Plan Trees

The HEFT approach is applied to various modified TPCH benchmark queries to get the CPU-

GPU assignment and scheduling and the performance is compared with the existing database

system MonetDB, our CPU and GPU implementations using operator algorithms as given in

[10][9]. The performance of CPU-GPU implementation using HEFT is shown in Figure 10.2.

The CPU-GPU implementation performs very well as compared to CPU or GPU implementa-

tion. Its performance with MonetDB is comparable as in some cases CPU-GPU implementation

outperforms MonetDB where as in other cases it is close to MonetDB. The MonetDB perfor-

mance is much better as compared to our CPU implementation even though both are using

multiple cores, it is because we have not used MonetDB operator implementation but the im-

plementation given in [10][9]. By using MonetDB operators implementation the CPU-GPU

performance can be increased even more. The execution of these queries is done by using

streams to overlap the execution time with the data transfer time, in this way the data transfer

time is reduced.
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Figure 10.2: HEFT Performance

10.2.3 Intra-Operator Parallelism

The intra-operator parallelism is done for four operators- filter, projection, hash join and group-

by. These operators are implemented to use both CPU and GPU to execute a single operation.

The amount of data to be processed in divided among CPU and GPU in such a way that the

execution time of CPU is equal to the summation of the execution time of GPU and the data

transfer time.

30



Figure 10.3: Intra-Operator Parallelism

The performance of various operators is shown in Figure 11. The intra-operator parallelism

(shown as CPU-GPU in Figure 10.3) outperforms both CPU and GPU implementation as both

the devices are used in CPU-GPU implementation.
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Chapter 11

Conclusions

A brief description of your chapter.

• We have automated the process of converting the MonetDB plan which is in the form of

MAL instruction into the tree structured plan.

• The HEFT algorithm gives performance close to MonetDB and better than standalone

CPU or GPU implementations for non-chain structured plan trees.

• For chain plan trees, the dynamic programming approach gives the optimal assignment

and for database application the greedy approach performs close to dynamic programming

approach.

• The problem of data transfer from CPU host memory to GPU device memory can be

solved with the help of streams by overlapping the computations with the communication

cost but still the initial transfer could be bottleneck in certain cases.

• The intra-operator parallelism can be used for smaller queries and queries involving single

relations to make sure the other device is not sitting idle.
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Chapter 12

Future Work

A brief description of your chapter.

• Integrating other algorithms like nested loop join, sort merge join, index nested loop join,

indexes on GPU etc. to the system.

• Currently we are using the CPU optimized plan so the future work also includes designing

an optimizer which takes into consideration all the devices present in the system.

• Another bottleneck for performance is the operator implementations which are not using

new features of cuda so changing the current operator implementations to use newer

features of cuda.

• Integrating MonetDB operator implementation to our existing system.
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Appendix A

Queries

The queries which we run for chain plan trees are the following-

Listing 1 Query QS1

select sum(l_quantity) as sum_qty, l_linenumber

from lineitem where l_suppkey <= 2000

group by l_linenumber

order by sum_qty;

Listing 2 Query QS2

select sum(c_acctbal) as sum_qty, c_nationkey

from customer

where c_nationkey <= 10 and

c_custkey between 1000 and 500000

group by c_nationkey;

Listing 3 Query QS3

select count(*)

from ( select o_totalprice

from orders

where o_orderkey between 2000 and 20000

and o_shippriority = 0

group by o_totalprice) as R;
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Listing 4 Query QS4

select sum(l_extendedprice) as sum,

count(*) as cnt

from lineitem

where l_suppkey <= 50000 and l_partkey <= 1000

group by l_linenumber

order by sum;

Listing 5 Query QS5

select avg(p_retailprice) as avg,

sum(p_retailprice) as sum,

count(*) as cnt from part

where p_size >= 1 and p_partkey

between 5000 and 50000

group by p_size;

Listing 6 Query QS6

select max(ps_availqty) from partsupp

where ps_suppkey between 200 and 20000 and

ps_partkey >= 10000 and

ps_supplycost > 999

group by ps_supplycost;
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