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Abstract

Prediction of query execution time has been a problem of vital importance since the very time

database management systems came into existence. Other than the obvious benefit of knowing

when the query would finish executing, it helps in query optimisation and taking decisions

concerning admission control, query scheduling and system sizing. The problem of predicting

query execution time is challenging particularly because it involves predicting runtime uncer-

tainties like data access patterns, data skew, spilling of data from memory to disk, etc. The

literature on this problem can be categorised into two primary approaches – (a) tuning the

existing cost models and (a) machine learning (ML) based models. The former approach tunes

the cost parameters used in cost functions of the existing model and the ML models are trained

on a set of executed query plans to predict execution time of a new plan. Thus, while the white

box approach of tuning achieves a very limited accuracy without questioning the fundamental

cost functions in the cost model, the ML models (which treat DBMS as a black box) are highly

training hungry, lack explainability and risk performing inadequately on queries dissimilar to

the training queries. In this work, after carefully investigating a well-tuned PostgreSQL engine’s

cost model and trying to fix it with minimal changes, we found that for most operators, replac-

ing PostgreSQL’s analytical cost functions with more sophisticated functions (and replacing

global cost parameters with new learnable local cost parameters specific to each operator) can

predict the execution time accurately. And for one particular operator (index scan), a simple

explainable learning approach like piecewise linear approximation is necessary and sufficient.

Our approach to cost modelling is a white-box approach that builds on top of years of expert

knowledge, is explainable (i.e. can tell exactly where and why each second was spent during

query execution), generalisable to any kind of new queries and easily integrable into traditional

database systems. We evaluated our model against a well-tuned PostgreSQL’s cost model on

the realistic Join Order Benchmark and have been able to predict query execution time very

close to accurate (bringing PostgreSQL’s mean Qerror of 7.35 down to 1.3) on a set of more

than 350 query plans.
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Chapter 1

Introduction

Prediction of query execution time is a classical problem in the query processing literature.

Other than the obvious benefit of knowing when the query would finish executing, it has several

other use cases:

Query Optimisation: Among various possible plans to execute a query, the optimiser picks

the one with the least estimated cost.

Query Scheduling and Admission Control: Knowing execution time of a query helps in

latency-aware scheduling of queries and making deadline-based decisions.

System Sizing: Prediction of query execution time as a function of hardware resources helps

in picking the right environment for query execution.

However, runtime uncertainties (like how the data will be accessed and where it will be

accessed from) and data properties (like skewness and duplicates) add to the non-deterministic

nature of the problem. The literature on this problem can be broadly categorised into two

primary approaches – (a) tuning the existing cost models ([15], [16]) and (b) machine learning

(ML) based models ([1], [3], [4], [7], [9], [10], [12], [13], [14]). While the former approach

tunes the cost parameters used in cost functions of the existing model, the ML models are

trained on a set of executed query plans to predict execution time of a new plan. Thus, the

white box approach of tuning achieves a very limited accuracy because it does not question the

fundamental cost functions in the cost model itself, and the ML approach (which treats the

DBMS as a black box) is highly training hungry, lacks explainability and performs poorly ([13],

[14], [15]) on queries dissimilar to the training queries.

In this work, we carefully investigate where a well-tuned PostgreSQL engine falls short,

if at all, in predicting the execution time of a given query and try to fix it with the least possible
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number of changes. Since PostgreSQL follows an operator-level cost modelling approach, we

first look for what all really needs prediction in the first place to predict execution time of each

operator, then present cost model of each operator (Sequential Scan, Index Scan, Sort, Nested

Loop Join, Sort Merge Join and Group By with Aggregation), followed by how cost models of

individual operators can be combined to predict execution time of the whole plan.

1.1 Characteristics of Our Approach

Following are the characteristics of our approach towards prediction of query execution time:

Leveraging system knowledge: Instead of building an altogether new cost model (like the

ML models that treat DBMSes as black box), we leverage years of expert knowledge put

into cost modelling and build on top of it (in other words, by taking the cost model of

PostgreSQL as the starting point). This approach has shown that replacing analytical

cost functions of most of the operators with more sophisticated ones and replacing cost

model of one operator (index scan) with a simple ML model is sufficient for fairly accurate

predictions. This approach further makes it easy to integrate into the existing engine’s

cost model.

Changing cost functions: We change the cost functions PostgreSQL uses for each operator

and learn the cost parameters used in these functions either by running calibrating queries

or using ML models. For example, for index scan, we replace the analytical model of

PostgreSQL based on unrealistic assumptions (like uniform tuple distribution across data

pages and uniform duplicate distribution in attribute domain) with an ML model that

learns execution time of index scan by training on domain-covering index scans that

learn properties of the physical layout of the database. For sort operator, we add new

cost functions based on pre-sortedness and duplicates in the attribute values. And for

join operators, we tune the cost parameters locally using calibrating queries. Thus, our

approach is fundamentally different from the existing approaches that either treat the

system as a black box or tune the cost parameters globally leaving the cost functions

unchanged.

Explainability: For most of the operators, our analytical models predict execution times

accurately. For index scan, learning on the physical layout of data on disk is imperative,

as we will show later, which we achieve by using piecewise linear approximation on a

training set of domain-covering index scans. This hybrid approach of sticking to analytical

modelling and using explainable ML modelling sparingly makes it easy to put finger
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on where exactly each second of the query execution time would be spent and, in case

the prediction goes awry, where exactly it went wrong, as we will show in Chapter 7.

Furthermore, if one still wants to exploit deep learning, there is no need to train on

whole plans but only on index scan operator. This way, the accuracy, explainablity and

generalizability of the deep learning models themselves can be enhanced.

Generalizability: The ML models risk performing not as good ([13], [14], [15]) on plans dis-

similar to the ones used in training set. However, our approach is completely generalizable

because we do not train on a set of executed plans. Only for index scan, we train on a set

of index scan queries that cover whole domain of attributes. Note that it is far difficult to

cover the plan space using a set of executed plans than cover an attribute domain space

using a set of range index scans. In Chapter 7, we tested our model on unseen query

plans and predicted accurately for most of them.

1.2 Assumptions

We have taken the following assumptions for our query execution environment: a) Single query

and isolated environment (i.e. no other user processes running on the system), b) Disk-resident

database, c) Cold cache (i.e. memory is cleared before running a query), d) Indexes built only

on numerical attributes and d) Perfect cardinality estimates. Each cost function takes the

number of tuples (cardinality) to be processed as an input parameter. To separate errors of

cost estimation from those of cardinality estimation, we assume that the input cardinalities

are perfect. To actualise this assumption in practice, we first force the executor to execute

a given query plan, then record the actual cardinalities at each edge, then feed these perfect

cardinialities back into the cost model (bypassing the calls to the cardinality estimator) thus

giving us predicted costs at each edge of the query plan on perfect cardinality inputs. Further,

we only consider the operators - Sequential Scan, Index Scan, Sort, Nested Loop Join, Merge

Join and Group By with Aggregation - in this work. Although single query environment

might seem like an unrealistic assumption from industrial perspective, we want to first test our

approach in this simpler environment and then move forward to multi-query (resource-sharing)

environment.

1.3 Roadmap

We first briefly explain how PostgreSQL estimates the cost of a query plan and how Wu’s

model [15] tunes the parameters in Chapter 2. Then we talk about prediction of each operator’s

execution time (Sequential and Index Scan in Chapter 3, Sort in Chapter 4, Nested Loop Join
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and Sort Merge Join in Chapter 5, and Group By with Aggregation in Chapter 6). For each

operator, we talk about PostgreSQL’s execution and cost model, followed by its caveats and

our modelling approach explained with a few examples on the IMDB [6] dataset. We assume

a no spilling scenario (i.e. the memory does not have to spill data over to the disk during

query execution due to lack of space) for chapters 3 to 6 and show experiments for the same in

Chapter 7 where we evaluate our model against a well-tuned PostgreSQL’s on the Join Order

Benchmark (JOB [6]). Then, we discuss the spilling scenario in Chapter 8 and the related work

in Chapter 9 followed by a note of conclusion and future work in Chapter 10.
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Chapter 2

PostgreSQL’s Cost Model

We start with giving a broad overview of PostgreSQL’s cost model that uses a vector of five

global cost parameters. Let C be that vector, as follows:

C = [IO SEQ COST, IO RANDOM COST,CPU TUP COST, CPU INDEX COST,

CPU OP COST ]T

where the cost parameters are defined as:

1. IO SEQ COST : I/O cost to sequentially access a page

2. IO RANDOM COST : I/O cost to randomly access a page

3. CPU TUP COST : CPU cost to process a relation tuple

4. CPU INDEX COST : CPU cost to process an index tuple

5. CPU OP COST : CPU cost to perform an operation like hash and aggregation

The cost CO of an operator O in a query plan is given by CO = NTC where N =

[Ns, Nr, Nt, Ni, No]
T represents the number of pages sequentially accessed, number of pages

randomly accessed, number of relation tuples processed, number of index tuples processed and

number of CPU operations respectively, all during the execution of the operator O.

2.1 Tuning PostgreSQL’s Cost Parameters

Postgres assigns default values to the vector C ([1, 4, 0.01, 0.05, 0.0025]T ) keeping IO SEQ COST

as the base value and other parameters’ values relative to it. Thus, the estimated cost of Post-

gres is in IO SEQ COST units. To avoid assigning default values and to estimate cost in real
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time units, Wu et al [15] tune these parameters using a set of calibrating queries. To get the cost

of the whole plan, Postgres adds the cost of the individual operators. This is because Postgres

uses a single-threaded process to execute a query plan. Thus, at one time, only one operator

operates resulting in no parallel computations. Further, since it is a pull-based execution model

(i.e. to get a tuple, the parent node has to ask the child node), CPU computations and disk

fetches do not overlap.

(a) Query Cost Prediction Example 1

(b) Query Cost Prediction Example 2

Figure 2.1: Predictions of query execution times on two example plans
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2.2 Examples

Figure 2.1 shows an example of two queries (part of JOB queries 18b and 7a) executed on Post-

gres. Figures 2.1a and 2.1b show their query plans annotated with the Wu-tuned PostgreSQL’s

estimations (Pest) and our estimations (Oest) for each operator, along with the actual execution

times (Act). In Example 1, Postgres overestimated the cost of query plan ( 2 mins instead

of 23s), mostly due to overestimating the cost of all sort operators. This is broadly because

Postgres charged a sort comparison cost (CPU OP COST ) of eleven times higher than the

actual sort comparison cost (which we locally tuned using a calibrating query to get the cost

right). Similarly in Example 2, Postgres predicted the cost of plan as 15 mins whereas it was ac-

tually only 71s. This was mostly because it overestimated the costs of all Index Scan operators

based on uniform tuple distribution assumption across all pages which led to overestimations

in number of pages predicted to be scanned from the disk. The input cardinality estimates in

each operator are ensured to be perfect, thus the errors are only due to cost modelling.
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Chapter 3

Prediction of Scan Operators

SELECT *

FROM R

WHERE v1 ≤ A ≤ v2

Figure 3.1: Scan Query Template Q〈R,A, v1, v2〉

Scan operators can take up a lot of total execution time of a query, especially in the case of

disk-resident databases, and thus their accurate prediction is important. There are mainly two

types of scan techniques that DBMSes use – sequential scan and index scan. For the sake of

convenience, let us assume a SQL query Q < R,A, v1, v2 > (Figure 3.1). Executing Q returns

the tuples from relation R whose values of attribute A lie between v1 and v2 (both inclusive).

Note that other forms of predicates (i.e. with <,>,==, ! =) can be easily converted into the

form of Q. Also, an absence of the upper (and/or lower bound) on the attribute value simply

means presence of the default maximum (and/or minimum value) of the attribute. We will now

discuss both the scan operators in detail.

3.1 Sequential Scan

Given a query Q < R,A, v1, v2 >, the sequential scan operator sequentially reads the consecu-

tive pages of the relation R while filtering out tuples based on the given filter. Thus:

Estimated Cost = IO SEQ COST ∗ n + CPU TUP COST ∗ t

where n = total pages and t = total tuples in the relation R. We evaluated Wu-tuned Post-

greSQL’s predictions on all relations in JOB for sequential scan and all the queries were found

to have a relative error of ≤ 1%. Thus, we use PostgreSQL’s model for sequential scan as it is.

8



Figure 3.2: Analysis of PostgreSQL’s cost model for Index Scan

3.2 Index Scan

Apart from the range filter predicate (v1 ≤ A ≤ v2), there can be another type of filter

predicate: equality predicate (A = v). In isolation, the equality predicate can be seen as a

range predicate (v ≤ A ≤ v), but in a plan setting, the equality predicate has to be treated

differently. We defer this discussion to Section 5.1 and focus only on the range predicate here.

During range index scan, Postgres first reads the index pages from root to the first

leaf (containing value v1), then reads the data pages corresponding to the values present in

that leaf (in order), then reads the next index leaf page and repeats the procedure until the the

last value v2 has been read. The index scan operator is particularly hard to predict because

Postgres accesses the data pages in ascending order of attribute values from v1 to v2, physical

locations of which can be in any order or even in different parts of the disk due to fragmentation.

Due to this, time to access data pages can vary depending on the physical distance between

them. Data pages once accessed previously may also be found cached in memory. Due to this,

predicting the number of pages to be scanned from disk solely based on tuple cardinality is

challenging.

3.2.1 PostgreSQL’s Cost Model of Index Scan

To keep it brief, we have omitted the parts of the model that estimate the time spent in scanning

index pages from root to leaf, and the CPU cost of processing the index and relation tuples,

which are negligible compared to I/O time of relation and index pages.

For each index on each relation, Postgres maintains a correlation factor (corr) between

the attribute values and their respective data page ids (using Pearson Correlation Coefficient

formula), which is essentially a measure of the randomness in the data layout of that attribute.

Corr = 1 means the index is clustered (the order of attribute values in index is same as the

order of attribute values in the relation i.e. ascending order). Corr = −1 means descending
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order and corr = 0 means maximum randomness in the data layout of the attribute. Using

corr value, Postgres interpolates between the minimum cost (MinC: cost of scanning pages

sequentially) and maximum cost (MaxC: cost of scanning pages from random locations) to

estimate the cost C(R) of index scan on relation R using the following formula:

C(R) = corr2(MinC) +MaxC(1− corr2)

MinC = relation selectivity ∗ total relation pages ∗ IO SEQ COST

MaxC = estimated relation pages ∗ IO RANDOM COST

where estimated relation pages is found by the Mackert and Lohman (M&L) approximation

model [8]. Further, estimated cost to read index pages (C(I)) is given as:

C(I) = relation selectivity ∗ total index pages ∗ IO RANDOM COST

Thus, the total estimated cost by Postgres is given as:

TC = C(R) + C(I)

3.2.1.1 Shortcomings

The above cost model for index scan, however, suffers from the following critical limitations:

1. It uses the same value of corr and IO RANDOM COST for all ranges, which can be

different for different ranges. For instance, in Figure 3.2, we ran a few index scan queries

on the movie id attribute of the movie info relation (from the IMDB dataset) for which

the estimated and actual values of the variables used in aforementioned cost model of index

scan are shown. The corr value of the attribute (movie id) is 0.1 but the actual corr of

the last query is almost half. Similarly, another range (in Figure 3.3a, Range:[0, 250392],

of which we will talk about later) has corr value of 0.003.

2. The M&L formula assumes a) uniform distribution of tuples across data pages, b) uniform

duplicate distribution across attribute domain and that c) the memory buffer follows the

LRU policy, among other assumptions, which are not very realistic. As seen in Figure

3.2, the estimated number of relation pages using this approximation model are far more

than the actual number of relation pages scanned.

3. The cost model for index scan itself is questionable as it gives inaccurate estimations even

after replacing the estimated values of all the above input parameters with actual values.

Note that the ratio of the estimated total cost with actual values and actual time is also
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different for the queries. Thus, a magic number to multiply with the estimated cost to

get actual time is not possible.

3.2.2 Our Cost Model of Index Scan

PostgreSQL’s model went for a toss because of its global view of the relation being scanned. To

capture local view, we try partitioning the attribute domain such that in each partition, data

follows similar properties like correlation, tuple distribution across pages and disk location. So,

if a range falls inside a partition, it can be easily predicted (as we will show below) and if it

falls across partitions, then we can predict contribution of each partition to the total execution

time. Let us explain our training and prediction procedures using an example:

3.2.2.1 Training Procedure

1. Generate the (blue-coloured) curve in Figure 3.3a by executing the following query:

select ∗ from movie info where lb ≤ movie id ≤ v

where lb(= 0) is the lower bound on movie id and variable v is increased in a fixed

intervals. Note that the x-axis is cardinality and not the attribute value. The resulting

blue curve can be approximated with a linear piecewise function (shown in black colour).

Here, three lines were sufficient giving us two inflexion points. For the sake of simplicity,

let’s call the starting point and end point as inflexion points as well. Thus, we have a

total of four inflexion points - I1, I2, I3 and I4. The point I2 here represents a change in

the correlation. For range I1 to I2, the corr value was 0.003 but for range I2 to I3, the

value increased to 0.06 due to proximity of data pages, thus giving a decrease in slope as

the cardinality increased. Further, around 10% of the data pages scanned in range [I2,

I3] were found cached in memory (already scanned in range [I1, I2]).

2. Suppose we want to predict execution time for a range between I1 and I2. Then, we do it

only using the Curve 1. But if we want to predict for a range between, say I2 and I3, we

cannot use only the Curve 1 as this will be an underestimation because of the decrease in

slope due to caching effect. Thus, we need a fresh curve which starts from the point I2.

So, create a new curve (Figure 3.3b) with the second inflexion point I2 (in Figure 3.3a)

as the starting point. We obtained three inflexion points in Figure 3.3b after piecewise

linear curve fitting. The corr value of range I2 to I3 was almost same as that of I3 to

I4 but “half” of the data pages accessed in the latter range were already accessed in the

former range, thus decreasing the slope due to caching effect.
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(a) Curve 1

(b) Curve 2

Figure 3.3: Training Curves 1 and 2 for Prediction of Range Index Scan

3. Repeat step 2 to get the learned curves 3 and 4 (Figures 3.4a and 3.4b) until no new in-

ternal inflexion points are required. At point I4, again there was an increase of correlation

from -0.02 to 0.03 and around 20% of data pages accessed were already found cached. The

requirement of an inflexion point is decided based on training error. If error on each point
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(a) Curve 3

(b) Curve 4

Figure 3.4: Training Curves 3 and 4 for Prediction of Range Index Scan

of the training curve is less than a pre-determined threshold (5 seconds here), then we

need only one line (i.e. zero internal inflexion points) for fitting. The final set of inflexion

points is the union of inflexion points in all curves. While generating a new curve at any

step, most of the inflexion points either repeat from the old set or lie very close. The
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inflexion points that lie close can be clubbed into one by taking the average. Note that

in our example, we have got five inflexion points, I1 to I5.

3.2.2.2 Prediction Procedure

Suppose we want to predict execution time of the query:

select ∗ from movie info where A ≤ movie id ≤ B

where A and B are constants. Let’s call the curves got in the training phase as C1, C2, ....,

Cm (m = 4 in our example) and the inflexion points as I1, I2,..., In (n = 5 in our example).

First, the points A and B are mapped to their respective cardinalities, which we learnt using

piecewise linear approximation as well. Let’s call the cardinalities w.r.t. attribute values

A and B as cardA and cardB. Suppose the range [cardA, cardB] lies between I1 and I4, as

shown in Figure 3.4. Then the range [cardA, cardB] is partitioned by the inflexion points into

three partitions - [cardA, I2], [I2, I3] and [I3, cardB]. We need to predict time spent in each of

these partitions. Let’s call the contribution by curve Ck for a partition [i, j] as Ck(i, j), where

Ck(i, j) = Ck(Ik, j)−Ck(Ik, i− 1) where Ik is the first inflexion point in the curve Ck. One way

to predict total execution time for range [cardA, cardB] is to simply add C1(cardA, I2), C2(I2, I3)

and C3(I3, cardB). But this way, we are ignoring the caching effect of range [cardA, I2] on range

[I2, I3] and of range [cardA, I3] on range [I3, cardB]. To tackle this problem, we apply a heuristic

of averaging the time across all curves for every partition. For example, for partition [I2, I3],

we average time predicted by Curve 1 and Curve 2 which, for this particular partition, consider

and do not consider the caching effect of range [cardA, I2] respectively. Then the predicted

execution time for the aforementioned query will be given by:

Predicted time = C1(cardA, I2) + avg(C1(I2, I3), C2(I2, I3)) +

avg(C1(I3, cardB), C2(I3, cardB), C3(I3, cardB))

A simple case would be when the range [cardA, cardB] lies in, say the range [I2, I3].

Then, predicted time would simply be C2(cardA, cardB). Note that the first curve to contribute

to the predicted time is the one for which there is no internal inflexion point before cardA. The

rest of the curves are simply the ones which contain a portion of the range. The intuition

behind the model is that the inflexion points capture the change in increase of execution time

due to factors like fragmentation or caching or correlation effect. The predictions of the queries

in Figure 3.2 using our model were 4s, 21s and 64s respectively.
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Chapter 4

Prediction of Sort Operator

SELECT *

FROM R

ORDER BY A1, A2, .. , Ak

Figure 4.1: Sort Query Template Q〈R, {A1, A2, .., Ak}〉

Given a query Q (Figure 4.1), Postgres uses quicksort to sort the relation R on the ordered set

of k attributes {A1, A2, . . . , Ak}.

4.1 PostgreSQL’s Cost Model for Sort

Assuming the cardinality of relation R is n, Postgres charges an expected comparison cost of

θ(nlogn) (multiplied with 2 ∗ CPU OP COST - a heuristic for a single unit of comparison

cost). It also charges an output processing cost of CPU OP COST per tuple, which is the

case for all operators as we will see.

Thus, Postgres’ cost formula for sorting is as follows:

Comparison Cost = 2 ∗ CPU OP COST ∗ input card ∗ log2(input card)

Output Cost = CPU OP COST ∗ input card

F inal Cost = Comparison Cost+Output Cost

4.1.1 Shortcomings

The caveats in the Postgres’ model are as follows:

1. The execution time of sorting a relation depends not only on the number of comparisons

but also on the actual movement of tuples. The latter is dependent primarily on two data
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Figure 4.2: Sort Operator Examples

properties: pre-sortedness and duplication factor. For example, a pre-sorted array will

incur zero tuple movement cost, and an array that is not pre-sorted but has large number

of duplicates (for instance, an array of only two distinct values occurring consecutively)

will also incur very less movement cost. Though the duplication factor can be seen

as a specific case of pre-sortedness, we see these two differently because of the way we

measure them. For a single attribute, we measure pre-sortedness as the (absolute value of)

correlation coefficient (corr) between an array and its sorted counterpart, and duplication

factor (dup) as:

dup(#rows,#distinct values) =
#rows−#distinct values

#rows− 1

2. Postgres does not take into consideration the number of attributes (k) in cost estimation.

Thus, for any number of attributes, Postgres’ estimated cost of the sort query remains

same. For example, in Figure 4.2, we ran a couple of queries on the same relation cast info

but different ORDER BY clauses. But Postgres predicted same cost of all queries no

matter how many or what attributes there were in the Order By clause.

3. As a result of above, Postgres ignores the order of attributes as well. It’s important to

consider the order because, for instance, if the first attribute has all distinct values, then

the subsequent attributes will not even be considered for comparison. On the other hand,

if the first attribute has all elements same, then the next attribute will decide the sorting

order and thus add to the sorting cost.
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4.2 Our Cost Model for Sort

Algorithm 1: For prediction of sorting cost of an ordered set of attributes

Function Cost Sort Single Attr
Input: corr, dup, input card

Output: sorting cost of a single attribute

comparison cost = COMPARISON COST ∗ input card ∗ log2(input card);

movement cost = (1− (W ∗ corr + (1−W ) ∗ dup)) ∗
MOV EMENT COST ∗ input card ∗ log2(input card);

return comparison cost+movement cost;

Function Cost Sort
Input: num attributes, corr[], dup[], input card

Output: sorting cost of an ordered set of attributes

total cost = 0;

current dup = 1;

current corr = 1;

for i = 0; i < num cols; i+ + do
total cost + = current dup ∗ Cost Sort Single Attr (current corr ∗
corr[i], dup[i], input card);

current corr ∗ = corr[i];

end

output cost = CPU TUPLE COST ∗ input card;

return total cost+ output cost;

There are three major costs involved in sorting - comparison cost, movement cost

and output cost. We introduce two new local cost parameters - COMPARISON COST and

MOV EMENT COST . The former is tuned on an attribute with no expected movement (i.e.

corr = 1) and the latter is tuned on an attribute with maximum movement (i.e. corr = 0,

dup = 0). The COMPARISON COST was found to be around eleven times lower and the

MOV EMENT COST around four times lower than the CPU OP COST on our machine.

For example, for first query in Figure 4.2, Postgres estimated 144s for sorting on attribute

person id of relation cast info when in fact, the actual time was very less (13s). Our model

predicted a comparison cost of 6s and a movement cost of 7s (corr = 0.7, dup = 0.8). Similarly,

17



Figure 4.3: Heuristics for change in corr and dup values of an attribute in a plan

our model predicted a comparison cost of 6s for both second and third query but a movement

cost of 13s for movie id (corr = 0.005, dup = 0.9) and 5s for role id (corr = 1, dup = 0.9).

In case of multiple attributes, the first attribute (A1) will contribute all the sorting

time that it would if it were in isolation. The contribution of the second attribute (A2) is

dependent on dup[A1]. If dup[A1] = 1, A2 will also contribute all the sorting time that it would

if it were in isolation. But if dup[A1] = 0, this means A1 has all distinct elements and thus, there

won’t be any contribution to sorting time from A2 to Ak. We apply the heuristic of multiplying

the sorting time of A2 with dup[A1] to get its contribution. Similarly with the subsequent

attributes. Note that we are assuming attribute value independence here. Algorithm 1 shows

the prediction algorithm in which the main function Cost Sort calls Cost Sort Single Attr

to calculate the contribution of every attribute in the Order By clause. Note that in the

movement cost, W is a weight parameter discovered during tuning that decides how much

weight is given to corr and how much to dup. In our experiments, W was set to 0.4.

The corr and dup values for all attributes of all relations are kept pre-computed in

the pre-compilation phase. However, the values of the intermediate relations that a plan may

generate are unknown beforehand. In Figure 4.3, we came up with a set of simple rules on

how corr and dup values can change when a certain operation occurs. The rules have been

kept simple because it is difficult to calculate the exact values of corr and dup for intermediate
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relations without keeping significant amount of metadata. The assumption of attribute value

independence holds here as well. These formulae are w.r.t. a single attribute. The formulae for

the case of multiple attributes are easily derivable.
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Chapter 5

Prediction of Join Operators

SELECT *

FROM R1, R2

WHERE R1.A1=R2.B1 AND .. AND R1.Ak=R2.Bk

Figure 5.1: Join Query Template Q〈R1, R2, {{A1, B1}, .., {Ak,Bk}}〉

Given a query Q (Figure 5.1) with two input relations R1 and R2 and a number of join predicates

(of typeR1.Ai = R2.Bi), Postgres can choose any join operator among Nested Loop Join (NLJ),

Sort Merge Join (SMJ) and Hash Join to execute the join operation. In this work, we only talk

about prediction of NLJ and SMJ operators in detail below.

5.1 Nested Loop Join

Given a query Q (Figure 5.1), Postgres executes the NLJ operator as follows - for each tuple

scanned from the outer relation, Postgres loops through the inner relation and checks for the

tuples that join with the tuple from outer relation based on the predicate conditions. However,

there are a few exceptions to this execution behaviour:

• Case 1: When the joining attribute(s) of inner relation is known to be unique (for instance,

in presence of PRIMARY KEY or UNIQUE constraint), for every outer relation tuple,

the loop on the inner relation stops if and when the unique value is found.

• Case 2: If the right child of NLJ is an index scan, only the tuples of the inner relation

corresponding to each outer tuple are scanned using index.

5.1.1 PostgreSQL’s Cost Model for Nested Loop Join

Postgres charges a processing cost and a predicate evaluation cost for NLJ. Another cost called

rescan cost is charged for scanning the tuples from the relation present in memory after being
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scanned from disk. It is called rescan cost to differentiate from the first scan that happens from

disk.

Rescan Cost = CPU OP COST ∗ inner rel card ∗ outer rel card

Processing Cost = CPU TUP COST ∗ inner rel card ∗ outer rel card

Predicate Evaluation Cost = CPU OP COST ∗#join predicates ∗ inner rel card ∗

outer rel card

F inal Cost = Rescan Cost+ Processing Cost+ Predicate Evaluation Cost

For case 1, the expected number of probes in inner relation for each “matched” outer

relation tuple is half the total size of the inner relation while for an “unmatched” tuple, the

whole inner relation is probed. For case 2, Postgres uses the same model that it uses for index

scan in isolation with a few minor changes.

5.1.2 Our Cost Model for Nested Loop Join

Postgres was found to overestimate the execution time of NLJ in all the cases. We have replaced

the global cost parameters with local parameters in the above cost functions as follows:

Rescan Cost = CPU RESCAN COST ∗ inner card ∗ outer card

Processing Cost = NLJ PROCESSING COST ∗ inner rel card ∗ outer rel card

Predicate Evaluation Cost = JOIN PRED EV AL COST ∗ #join predicates ∗

inner rel card ∗ outer rel card

Output Cost = CPU TUP COST ∗ output card

F inal Cost = Rescan Cost+ Processing Cost+ Predicate Evaluation Cost+Output Cost

The cost parameters CPU RESCAN COST and JOIN PRED EV AL COST were

found to be around two times and six times lower than CPU OP COST respectively after tun-

ing and NLJ PROCESSING COST was found to be a little lower than CPU TUP COST .

CPU RESCAN COST can be tuned using any NLJ query because the rescanning cost is

explicitly shown in PostgreSQL’s output query plan. NLJ PROCESSING COST can be

tuned by running an NLJ query with zero predicates and JOIN PRED EV AL COST can be

tuned using a single predicate and then subtracting the costs of other NLJ cost functions.

We handle Case 1 like Postgres does, because in expectation (as confirmed experimen-

21



tally), for each matched outer tuple, the fraction of inner table scanned is usually half. Coming

to Case 2, since Postgres’ model of this case is just an extension of index scan in isolation,

the problems remain the same. However, single index scan is one-time and join index-scan is

repetitive, and therefore brings in more caching effects. So to model this case, we again use the

power of machine learning.

Figure 5.2: Nested Loop Join Operator Examples

Note that Case 2 is a much harder problem than single index scan and cannot be

dealt with the way we modelled single index scan - i.e. pre-processing on the data layout of

relations because then we will have to pre-process on each possible stream of numbers (which are

exponential in number) unlike single index scan (in which case we had to pre-process only on the

stream of attribute values in ascending order). Instead, we have tried learning a piecewise linear

approximation curve which predicts execution time of scanning the right relation for a given

cardinality of distinct values from the left relation. For each index attribute on each relation,
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the training data was created by randomly sampling a fixed number, say t, of instances of k

random unique values in the domain of the index attribute. Here, k is varied from minimum

to maximum domain value of the index attribute in fixed intervals. So, for k unique values

coming from the left child, we predict execution time of scanning those k unique values in the

right child relation based on the t instances available. However, note that we do not know the

number of distinct values coming from the left child of the NLJ operator. So, for this, we use

the dup factor (as computed in Figure 4.3) on the left child’s joining attribute.

In Figure 5.2, we have shown examples of a couple of queries on the IMDB database.

The queries 1 to 4 are for the regular case, queries 5 and 6 are for case 1 and queries 7 to 9 are

for case 2. We talk about more extensive evaluation in Chapter 7.

5.2 Sort Merge Join

For the same join query in Figure 5.1, SMJ operator first sorts the two input relations on the

joining attributes and then merges them using the merge operation. In presence of duplicates

in the outer relation, the corresponding tuples in the inner relation could be scanned multiple

times. The output cardinality of the join can be seen as a reasonable measure of the number

of tuples rescanned from the inner relation.

5.2.1 PostgreSQL’s Cost Model for Sort Merge Join

Just like in NLJ, Postgres charges a Processing Cost, Predicate Evaluation Cost andOutput Cost

here as well. TheRescan Cost of tuples from inner relation are accounted for in the Processing Cost

itself. Note that all these cost functions use the same global cost parameter CPU OP COST .

Processing Cost = CPU OP COST ∗ (outer rel card+ output card)

Predicate Evaluation Cost = CPU OP COST ∗#join predicates ∗ output card

Output Cost = CPU OP COST ∗ output card

F inal Cost = Processing Cost+ Predicate Evaluation Cost+Output Cost

5.2.2 Our Cost Model for Sort Merge Join

Like NLJ, we have replaced the global cost parameters in the cost functions with new local cost

parameters in the light of few limitations in Postgres’ model, as follows:

Rescan Cost = CPU RESCAN COST ∗ max(output card − inner card, 0)

Processing Cost = SMJ PROCESSING COST ∗ output card
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Predicate Evaluation Cost = JOIN PRED EV AL COST ∗#join predicates ∗output card

Output Cost = CPU TUP COST ∗ output card

F inal Cost = Rescan Cost+ Processing Cost+ Predicate Evaluation Cost+Output Cost

Figure 5.3: Sort Merge Join Operator Examples

Like in NLJ, we replaced the global cost parameter CPU OP COST with local param-

eters SMJ PROCESSING COST and JOIN PRED EV AL COST in Processing Cost

and Predicate Evaluation Cost respectively, which are easily tunable using two SMJ queries,

former with zero predicates and zero duplicates in outer relation and latter with an SMJ query

with one predicate and zero duplicates. Further, we broke Postgres’ Processing Cost for-

mula into Rescan Cost and Processing Cost to tune a new local parameter RESCAN COST

separately.

In Figure 5.3, we show a few example queries executed on IMDB dataset, along with

the actual execution times, Postgres’ estimated times and our predicted times for the outer sort

operation, inner sort (+ rescan) operation and the merge operation.
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Chapter 6

Prediction of Group By Operator with

Aggregation

SELECT agg(B1), agg(B2),.., agg(Bm)

FROM R

GROUP BY A1, A2, .., Ak

Figure 6.1: Group By with Aggregate Query Template Q〈R, {A1, A2, .., Ak}, {B1, B2, .., Bm}〉

Given an aggregate query Q (Figure 6.1) which groups the relation R on an ordered set of

attributes {A1, A2, ..., Ak} and applies aggregation function (agg = count/sum/avg/min/max)

on attributes B1, B2, ..., Bm, Postgres can implement the Group By with Aggregate operation

in either of the two following ways:

• SORT-AGGREGATE: This method first sorts the relation on the Group By attributes

and then applies aggregation. Aggregation takes one pass through the relation and finds

values of each aggregate function for each group. Note that for each tuple, a comparison

is done with the previous tuple to check if it belongs to the previous group or it’s a new

group.

• HASH-AGGREGATE: This method first inserts the tuples of the relation into a hash

table based on the hashing of the Group By attributes and then applies aggregation for

each hash bucket. Note that since there can be collisions in the hash bucket, comparisons

are required here as well.

Postgres uses the same model for both of the above scenarios, which is as follows:

Group Comparison Cost = CPU OP COST ∗ num group by columns ∗ input card
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Aggregation Cost = CPU OP COST ∗ num aggregation columns ∗ input card

Output Cost = CPU TUP COST ∗ num groups

F inal Cost = Group Comparison Cost+ Aggregation Cost+Output Cost

Since JOB queries do not have Group By clause, we created a new set of queries by

adding Group By clauses to JOB queries and tested Postgres’ model on it. The estimations

were very close to accurate on the queries, incurring a relative error of less than 10% on most

of them. Thus, we use PostgreSQL’s model as it is.
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Chapter 7

Experiments

In this chapter, we evaluate our cost model against a well-tuned PostgreSQL’s cost model. To

reiterate, we have taken the following assumptions for our execution environment: a) Single

query and isolated environment (i.e. no other user processes running on the system), b) Disk-

resident database, c) Cold cache (i.e. memory is cleared before running a query), d) Indexes

built only on numerical attributes and d) Perfect cardinality estimates. All experiments are

run on an Intel Core i9-7900X machine with 3.30GHz CPU, 32GB RAM, 2TB 7200RPM HDD

and 64-bit Ubuntu 18.04. In this chapter, we consider the no spilling scenario and defer its

discussion to the next chapter.

7.1 Evaluation Benchmark

We evaluate our model on the Join Order Benchmark (JOB [6]). However, we do not evaluate

on the original query plans we got by executing JOB queries on PostgreSQL’s native optimiser.

Rather, we have created a host of six different suites of query plans using JOB queries for

training purposes because of class bias in the operator frequencies of the original plans. We

forced different combinations of possible choices of operators (by changing the configuration

parameters of PostgreSQL) and came up with the following suites (each query plan has scan

operators, join operators and an aggregate operator):

• Suite 1: Scan: Sequential, Join: NLJ

• Suite 2: Scan: Sequential, Join: SMJ

• Suite 3: Scan: Sequential (all filters removed), Join: SMJ

• Suite 4: Scan: Sequential, Join: Any
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• Suite 5: Scan: Index, Join: SMJ

• Suite 6: Scan: Any, Join: Any

The Suite 1 forces Sequential scan and NLJ operator on the optimiser. The execution times of

query plans in this suite range from a 5 secs to a 5 hours. The Suite 2 forces Sequential scan

and SMJ operator. The execution times of these query plans are all under 1 min. Thus we

created another suite (Suite 3) by removing all scan filters to test our model on high execution

times as well. Suite 4 forces only Sequential scan and leaves it on the native optimiser to pick

from NLJ and SMJ operators for join operation (the presence of these two operators in the

plans we got is almost equal). This way, we can do evaluation on interaction between the two

join operators. Suite 5 forces Index scan and SMJ operator and Suite 6 does not force any

operator. These two suites are for evaluation of index scan in isolation (as child nodes of SMJ

and left child of NLJ) and as right child of NLJ. We did not create a separate suite by forcing

Index Scan and NLJ because in Suite 6, most of the join operators were NLJ with index scan,

thus avoiding redundancy. And we did not create another suite by forcing Index Scan with Any

Join operator because we are already testing interaction between NLJ and MJ in Suite 4. JOB

queries do not have GROUP BY clause by default and we did not add them in these suites

so as to focus on the errors of only error-prone operators. We have further made sure that all

plans are unique.

7.2 Performance Evaluation

For each query plan, we measure the Qerror for PostgreSQL’s model and our model, where

Qerror(actual execution time(timeact), estimated execution time(timeest)) is defined as:

Qerror(timeact, timeest) = max(
timeact
timeest

,
timeest
timeact

)

For any query plan, the goal is to get a Qerror of as close as possible to 1. Note that since

Qerror is a multiplicative error, Qerror of, say 2 for a plan with execution time 10s means an

estimated time of 5s or 20s but for a plan with execution time 60 mins, it means an estimation

of 30 mins or 120 mins. Thus, the former estimation is not so bad in comparison to the latter.

For all the graphs below, the query plans have been ordered in the increasing order of execution

times from left to right. For each suite, we use the vector [mean Qerror, median Qerror, max

Qerror] as the evaluation metric (PQ for Postgres and OQ for ours). Further, for each suite, we

show Qerrors on per-query basis in bar graphs as well. As visible in graphs of all suites (Figures
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Figure 7.1: Performance on Suite 1

7.1 to 7.6), for each single query, we estimate better than Postgres. For every suite, we have

removed the outliers. Keeping this in mind, the evaluation on the suites is as follows:

Suite 1: The execution times of these 15 plans (Figure 7.1) range from 5s to 5 hours. First

12 plans are under 10 mins. Last 3 plans took 24 mins, 25 mins and 5 hours respectively.

Here, PQ : [1.5, 1.6, 1.8], OQ : [1.06, 1.04, 1.18]. Postgres overestimated the execution times

of all of these plans. For example, for the plan 4a, the actual time was 25 mins. Postgres

predicted it to be 40 mins but by simply tuning the local cost parameter of NLJ, we

brought the prediction to 25.5 mins.

Figure 7.2: Performance on Suite 2
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Suite 2: The execution times of these 108 plans range from 3s to 47s in the Figure 7.2. Here,

PQ = [3.5, 2.8, 6.6] and OQ = [1.1, 1.1, 1.3]. Postgres overestimated the times of all these

plans mostly because of overestimations on the sort operator. For example, for the plan

19d, the actual time was 46s, but Postgres estimated it to be 3 mins and we predicted

52s for it.

Figure 7.3: Performance on Suite 3

Figure 7.4: Performance on Suite 4

Suite 3: The execution times of these 49 plans (Figure 7.3) range from 11s to 2.5 hours. The

execution times till the 18b query plan are under 3 mins. From the next plan onwards,

the execution times are more than 7 hours. Note that for 7 hours, even a Qerror of 1.1

means a difference of 40 mins. Here, PQ : [2.3, 1.5, 5.1], OQ : [1.2, 1.1, 1.3]. For all these

plans, again Postgres overestimated the times, same as in Suite 2. For example, for plan

18a, the actual time was 11 mins which we predicted as 10 mins but Postgres estimated

as 15 mins.
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Suite 4: The execution times of these 70 plans (Figure 7.4) range from 4s to 12 hours. First

28 plans (till 1a) have execution times under 1 min. Next 12 plans (till 24b) have times

under 5 mins. Next 6 plans have time under 1 hour and then the execution times increases

gradually. Here, PQ : [1.7, 1.5, 4.7], OQ : [1.05, 1.04, 1.2]. The proportion of NLJ and MJ

in these plans is almost equal. So, Postgres’ high Qerrors on MJ are compensated for low

Qerrors on NLJ. But, since the times of some plans are high, even low Qerrors mean grave

differences. For example, for plan 22d, the actual time was 10.5 hours whereas Postgres

predicted 16 hour for it and we predicted 10 hours for it.

Figure 7.5: Performance on Suite 5

Figure 7.6: Performance on Suite 6

Suite 5: The execution times of these 49 plans (Figure 7.5) range from 14s to 2mins. Postgres

overestimates the times of these plans due to overestimations on index scans. Here,
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PQ : [14.1, 14.8, 33.3], OQ : [1.13, 1.08, 1.5]. For example, for plan 7a, the actual time was

1.4 mins which we predicted as 1.3 mins but Postgres estimated as 16 mins.

Suite 6: The execution times of these 72 plans (Figure 7.6) range from 6s to 27 mins. First

30 plans have times under 1 min. Last 16 plans have times over 16 mins. For some plans,

PostgreSQL’s Qerror crosses 50 and reaches even 100. But we have kept the bars till

50 for better visibility. Here, PQ : [14.3, 6, 121.3], OQ : [2.1, 1.5, 7.9]. The large Qerrors

in this suite are mostly because of NLJ with index scan operator. Unlike all previous

suites where Postgres overestimated times of each plan, here the estimations are mix of

underestimations and overestimations. For example, for plan 11d, the actual time of 6

secs was overestimated by Postgres (2.5 mins) and us (18s) whereas for plan 8b, the actual

time of 70s was underestimated by Postgres (10s) and overestimated by us (80s).
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Chapter 8

Spilling

During the execution of a query plan, the executor might have to store the intermediate relations

in memory for further operation. However, if the available memory is insufficient, the executor

might have to spill data to disk. In our setting, where the possible operators in a plan are

scan (sequential and index), sort, join (nested loop join and merge join) and group by with

aggregate, following are the operations that can cause spilling:

1. Sort: If enough memory is available, PostgreSQL uses in-memory quicksort. But in case

a spilling is anticipated (i.e. when the available memory is less than the incoming input

size), PostgreSQL uses external merge sort to sort the input.

2. Index Scan: Due to insufficient available memory, the pages index-scanned previously

might be replaced from memory and thus, may have to be scanned again from the disk.

This compels us to re-consider our cost model of index scan because in our model, we

assumed that any page once accessed from disk can always be found in memory on a

repeated access. For now, we do not tackle this scenario and defer its discussion to the

future work.

3. Materialisation: In all the other cases, when spilling is anticipated, Postgres materialises

the input relation on disk and reads tuples from there. This operation appears as an

explicit materialisation operator in the plan.

For the first and third scenarios, Postgres predicts the number of disk reads/writes and

multiplies it with a heuristic-based cost of accessing the disk. The CPU costs of all operators

remain the same. PostgreSQL’s model for spilling is as follows:

1. For External Merge Sort, Postgres uses the standard algorithm which has the following
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complexity for number of pages to be read/written from/to the disk:

num pages = N/B ∗ logM/B(N/B)

where N = input size, B = page size,M = available memory size, all in bytes. N/B is

the number of runs and M/B is the merge order.

disk access cost = IO SEQ COST ∗ 0.75 + IO RANDOM COST ∗ 0.25

2. For materialisation,

num pages = N/B

disk access cost = IO SEQ COST

Thus,

spilling cost = disk access cost ∗ num pages

In the above model, PostgreSQL was highly overestimating the disk access cost be-

cause the swap space of disk for storing intermediate relations was actually way more fast. We

locally tuned the disk access cost and found it to be IO SEQ COST ∗ 0.25 instead, in both

the scenarios.

Figure 8.1: External Sort Examples

Figure 8.1 shows the performance of a few queries on the external sort operator in

isolation. As you can see, Postgres estimated same cost of all sort queries on the same relation

again, irrespective of the sort attributes. Alongwith our cost model for sort (which accounts

for tuple movement cost and differentiates between different ordered set of sorting attributes),
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the locally tuned disk access cost brought down PostgreSQL’s cost to predictions that are very

close to the actual times.

Figure 8.2 is performance of PostgreSQL’s and our cost model on JOB queries. For

these queries, we forced the sequential scan operator and let the optimiser pick the join operator.

The memory buffers available to Postgres here are almost negligible (a configurable parameter).

Although different memory buffer sizes will lead to different spilling scenarios, we show the

worst case for maximum possible disk usage. The execution times of the 13 queries in the

figure increase gradually from 12s to 3 hours from left to right. Here, PQ : [6.2, 4, 19], OQ :

[1.16, 1.1, 1.7].

Figure 8.2: Spilling query examples
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Chapter 9

Related Work

Wu et al. followed up on their tuning [15] approach by trying to tackle the noise in the cost

tuning parameters [16], and later ([14]) by using execution feedback on scan operators and

mixed cost estimates on internal operators to solve the problem of relative cost modelling

(which is useful in problems like query optimisation and index tuning). As part of ML-based

research, Chetan et al. [4] used random forest technique on an ensemble of models to give

a band of execution time. Ganapathi et al. [3] took plan-level features of a query plan and

applied a Kernel Canonical Correlation Analysis approach to predict time and other metrics

like CPU usage etc. Akdere et al. [1] went for a hybrid modeling approach (SVM at plan

level and linear regression at operator level). Li et al. [7] applied linear regression on all the

nodes of a plan followed by runtime scaling. All of these machine learning techniques use either

plan-level modelling or same models but at operator-level. They take for instance, cardinality

inputs and operator types as features and map execution times on those feature vectors. There

have also been deep learning based papers recently ([10] and [12]) that use the neural network

approach for each operator and combine the result using another neural network on top. With

the advent of big data, some recent papers ([2], [5], [11]) have tried to tackle the problem on big

data platforms (like Spark that uses MapReduce algorithm to execute queries in a multi-user

environment). Papers like [9] and [13] have tried reinforcement learning as well to find the

best plan during query execution, thus bypassing the traditional way of estimating costs and

cardinalities.
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Chapter 10

Conclusion and Future Work

In conclusion, we have tried a different approach of predicting query execution time by min-

imally changing the cost model of PostgreSQL. We studied PostgreSQL’s cost model of each

operator and changed the cost functions of each one of them, as summarised in 10.1. For Sort

and Join (Nested Loop Join and Sort Merge Join) operators, we locally tuned the cost param-

eters. For Sort Operator, we identified that PostgreSQL’s model does not account for actual

movement cost of tuples and does not differentiate between the ordered set of attributes on

which sorting is supposed to happen. So we added cost functions to account for these short-

comings. Finally, for index scan, we learned the physical data layout properties based on a

set of domain-covering index scan queries by fitting a piecewise linear approximation curve on

the execution times of those scans against their cardinalities. We experimentally showed that

our approach works well in predicting the cost of query plans accurately by evaluating on more

than 350 query plans with 5-6 joins on an average in each plan. Our approach is explainable,

easy to debug, generalizable to any query plan and conveniently integrable in the traditional

cost models.

Figure 10.1: Summary of our approach
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As the future work of the project, we want to predict execution times of the remaining operators

(i.e. hash join, index scan on string-valued attributes and in spilling scenario, index-only scan

and limit). Further, we want to integrate the model in PostgreSQL to check for any improvement

in query optimisation, enhance accuracy of our own model with better approaches (especially

for NLJ with index scan), check for any increase in accuracy of deep-learning based cost models

by using them only for index scan and, finally, extend the execution environment to multi-user

system.
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