Think Global, Model Local: A Fine-Grained Approach to
Query Cost Estimation with Learned Parameters

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MNiaster of Technology
IN
Saculty of Engineering

BY
Vishal Goel

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

July, 2020

Declaration of Originality

I, Vishal Goel, with SR No. 04-04-00-10-42-18-1-15451 hereby declare that the material
presented in the thesis titled

Think Global, Model Local: A Fine-Grained Approach to Query Cost Estimation

with Learned Parameters

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2018-2020.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

(© Vishal Goel
July, 2020
All rights reserved

DEDICATED TO

my beloved family and friends

Acknowledgements

I am immensely grateful to my advisor, Prof. Jayant R. Haritsa, for providing me with an
opportunity to work under his esteemed guidance. Among the many teachings he has imparted
over the years, approaching a problem in the simplest way possible and presenting your solution
with the utmost clarity of thought and elegance are the golden ideas I will never forget.

I also thank the Database Systems Lab for providing me with an unwavering support and
motivation to keep moving forward, one step after the other.

I further thank the Department of Computer Science and Automation and Indian Institute
of Science for an excellent platform conducive to a steady learning growth and a peaceful
atmosphere for true mindfulness.

Finally, I pay my deepest respects to my family and friends for always believing in me.

Abstract

Prediction of query execution time has been a problem of vital importance since the very time
database management systems came into existence. Other than the obvious benefit of knowing
when the query would finish executing, it helps in query optimisation and taking decisions
concerning admission control, query scheduling and system sizing. The problem of predicting
query execution time is challenging particularly because it involves predicting runtime uncer-
tainties like data access patterns, data skew, spilling of data from memory to disk, etc. The
literature on this problem can be categorised into two primary approaches — (a) tuning the
existing cost models and (a) machine learning (ML) based models. The former approach tunes
the cost parameters used in cost functions of the existing model and the ML models are trained
on a set of executed query plans to predict execution time of a new plan. Thus, while the white
box approach of tuning achieves a very limited accuracy without questioning the fundamental
cost functions in the cost model, the ML models (which treat DBMS as a black box) are highly
training hungry, lack explainability and risk performing inadequately on queries dissimilar to
the training queries. In this work, after carefully investigating a well-tuned PostgreSQL engine’s
cost model and trying to fix it with minimal changes, we found that for most operators, replac-
ing PostgreSQL’s analytical cost functions with more sophisticated functions (and replacing
global cost parameters with new learnable local cost parameters specific to each operator) can
predict the execution time accurately. And for one particular operator (index scan), a simple
explainable learning approach like piecewise linear approximation is necessary and sufficient.
Our approach to cost modelling is a white-box approach that builds on top of years of expert
knowledge, is explainable (i.e. can tell exactly where and why each second was spent during
query execution), generalisable to any kind of new queries and easily integrable into traditional
database systems. We evaluated our model against a well-tuned PostgreSQL’s cost model on
the realistic Join Order Benchmark and have been able to predict query execution time very
close to accurate (bringing PostgreSQL’s mean Qerror of 7.35 down to 1.3) on a set of more

than 350 query plans.

1

Contents

Acknowledgements
Abstract

Contents

List of Figures

1 Introduction
1.1 Characteristics of Our Approach
1.2 Assumptions
1.3 Roadmap

2 PostgreSQL’s Cost Model
2.1 Tuning PostgreSQL’s Cost Parameters
2.2 Examples

3 Prediction of Scan Operators

3.1 Sequential Scan
3.2 Index Scan.
3.2.1 PostgreSQL’s Cost Model of Index Scan

3.2.1.1 Shortcomings

3.2.2 Our Cost Model of Index Scan

3.2.2.1 Training Procedure L 0L

3.2.2.2 Prediction Procedure

4 Prediction of Sort Operator
4.1 PostgreSQL’s Cost Model for Sort

1l

ii

iii

10
11
11
14

15

CONTENTS

4.1.1 Shortcomings 15

4.2 Our Cost Model for Sort 17

5 Prediction of Join Operators 20
5.1 Nested Loop Join 20
5.1.1 PostgreSQL’s Cost Model for Nested Loop Join 20

5.1.2 Our Cost Model for Nested Loop Join 21

5.2 Sort Merge Join 23
5.2.1 PostgreSQL’s Cost Model for Sort Merge Join 23

5.2.2 Our Cost Model for Sort Merge Join 23

6 Prediction of Group By Operator with Aggregation 25
7 Experiments 27
7.1 Evaluation Benchmark 27
7.2 Performance Evaluation 28

8 Spilling 33
9 Related Work 36
10 Conclusion and Future Work 37
Bibliography 39

v

List of Figures

2.1 Predictions of query execution times on two example plans 6
3.1 Scan Query Template Q(R, A,v1,v2) 8
3.2 Analysis of PostgreSQL’s cost model for Index Scan 9
3.3 Training Curves 1 and 2 for Prediction of Range Index Scan 12
3.4 Training Curves 3 and 4 for Prediction of Range Index Scan 13
4.1 Sort Query Template Q(R,{Al, A2,..,Ak}) 15
4.2 Sort Operator Examples 16
4.3 Heuristics for change in corr and dup values of an attribute in a plan 18
5.1 Join Query Template Q(R1, R2, {{Al, B1},..,{Ak,Bk}}) 20
5.2 Nested Loop Join Operator Examples 22
5.3 Sort Merge Join Operator Examples 24
6.1 Group By with Aggregate Query Template Q(R, {Al, A2, .., Ak}, {B1, B2, .., Bm}) 25
7.1 Performance on Suite 1 29
7.2 Performance on Suite 2 29
7.3 Performance on Suite 3 30
7.4 Performance on Suite 4 30
7.5 Performance on Suite 5 L 31
7.6 Performance on Suite 6 L. 31
8.1 External Sort Examples 34
8.2 Spilling query examples 35
10.1 Summary of our approach 37

Chapter 1
Introduction

Prediction of query execution time is a classical problem in the query processing literature.
Other than the obvious benefit of knowing when the query would finish executing, it has several

other use cases:

Query Optimisation: Among various possible plans to execute a query, the optimiser picks

the one with the least estimated cost.

Query Scheduling and Admission Control: Knowing execution time of a query helps in

latency-aware scheduling of queries and making deadline-based decisions.

System Sizing: Prediction of query execution time as a function of hardware resources helps

in picking the right environment for query execution.

However, runtime uncertainties (like how the data will be accessed and where it will be
accessed from) and data properties (like skewness and duplicates) add to the non-deterministic
nature of the problem. The literature on this problem can be broadly categorised into two
primary approaches — (a) tuning the existing cost models ([15], [16]) and (b) machine learning
(ML) based models ([1], [3], [4], [7], [9], [10], [12], [13], [14]). While the former approach
tunes the cost parameters used in cost functions of the existing model, the ML models are
trained on a set of executed query plans to predict execution time of a new plan. Thus, the
white box approach of tuning achieves a very limited accuracy because it does not question the
fundamental cost functions in the cost model itself, and the ML approach (which treats the
DBMS as a black box) is highly training hungry, lacks explainability and performs poorly ([13],
[14], [15]) on queries dissimilar to the training queries.

In this work, we carefully investigate where a well-tuned PostgreSQL engine falls short,

if at all, in predicting the execution time of a given query and try to fix it with the least possible

1

number of changes. Since PostgreSQL follows an operator-level cost modelling approach, we
first look for what all really needs prediction in the first place to predict execution time of each
operator, then present cost model of each operator (Sequential Scan, Index Scan, Sort, Nested
Loop Join, Sort Merge Join and Group By with Aggregation), followed by how cost models of

individual operators can be combined to predict execution time of the whole plan.

1.1 Characteristics of Our Approach

Following are the characteristics of our approach towards prediction of query execution time:

Leveraging system knowledge: Instead of building an altogether new cost model (like the
ML models that treat DBMSes as black box), we leverage years of expert knowledge put
into cost modelling and build on top of it (in other words, by taking the cost model of
PostgreSQL as the starting point). This approach has shown that replacing analytical
cost functions of most of the operators with more sophisticated ones and replacing cost
model of one operator (index scan) with a simple ML model is sufficient for fairly accurate
predictions. This approach further makes it easy to integrate into the existing engine’s

cost model.

Changing cost functions: We change the cost functions PostgreSQL uses for each operator
and learn the cost parameters used in these functions either by running calibrating queries
or using ML models. For example, for index scan, we replace the analytical model of
PostgreSQL based on unrealistic assumptions (like uniform tuple distribution across data
pages and uniform duplicate distribution in attribute domain) with an ML model that
learns execution time of index scan by training on domain-covering index scans that
learn properties of the physical layout of the database. For sort operator, we add new
cost functions based on pre-sortedness and duplicates in the attribute values. And for
join operators, we tune the cost parameters locally using calibrating queries. Thus, our
approach is fundamentally different from the existing approaches that either treat the
system as a black box or tune the cost parameters globally leaving the cost functions

unchanged.

Explainability: For most of the operators, our analytical models predict execution times
accurately. For index scan, learning on the physical layout of data on disk is imperative,
as we will show later, which we achieve by using piecewise linear approximation on a
training set of domain-covering index scans. This hybrid approach of sticking to analytical

modelling and using explainable ML modelling sparingly makes it easy to put finger

on where exactly each second of the query execution time would be spent and, in case
the prediction goes awry, where exactly it went wrong, as we will show in Chapter 7.
Furthermore, if one still wants to exploit deep learning, there is no need to train on
whole plans but only on index scan operator. This way, the accuracy, explainablity and

generalizability of the deep learning models themselves can be enhanced.

Generalizability: The ML models risk performing not as good ([13], [14], [15]) on plans dis-
similar to the ones used in training set. However, our approach is completely generalizable
because we do not train on a set of executed plans. Only for index scan, we train on a set
of index scan queries that cover whole domain of attributes. Note that it is far difficult to
cover the plan space using a set of executed plans than cover an attribute domain space
using a set of range index scans. In Chapter 7, we tested our model on unseen query

plans and predicted accurately for most of them.

1.2 Assumptions

We have taken the following assumptions for our query execution environment: a) Single query
and isolated environment (i.e. no other user processes running on the system), b) Disk-resident
database, c¢) Cold cache (i.e. memory is cleared before running a query), d) Indexes built only
on numerical attributes and d) Perfect cardinality estimates. Each cost function takes the
number of tuples (cardinality) to be processed as an input parameter. To separate errors of
cost estimation from those of cardinality estimation, we assume that the input cardinalities
are perfect. To actualise this assumption in practice, we first force the executor to execute
a given query plan, then record the actual cardinalities at each edge, then feed these perfect
cardinialities back into the cost model (bypassing the calls to the cardinality estimator) thus
giving us predicted costs at each edge of the query plan on perfect cardinality inputs. Further,
we only consider the operators - Sequential Scan, Index Scan, Sort, Nested Loop Join, Merge
Join and Group By with Aggregation - in this work. Although single query environment
might seem like an unrealistic assumption from industrial perspective, we want to first test our
approach in this simpler environment and then move forward to multi-query (resource-sharing)

environment.

1.3 Roadmap

We first briefly explain how PostgreSQL estimates the cost of a query plan and how Wu's
model [15] tunes the parameters in Chapter 2. Then we talk about prediction of each operator’s

execution time (Sequential and Index Scan in Chapter 3, Sort in Chapter 4, Nested Loop Join

and Sort Merge Join in Chapter 5, and Group By with Aggregation in Chapter 6). For each
operator, we talk about PostgreSQL’s execution and cost model, followed by its caveats and
our modelling approach explained with a few examples on the IMDB [6] dataset. We assume
a no spilling scenario (i.e. the memory does not have to spill data over to the disk during
query execution due to lack of space) for chapters 3 to 6 and show experiments for the same in
Chapter 7 where we evaluate our model against a well-tuned PostgreSQL’s on the Join Order
Benchmark (JOB [6]). Then, we discuss the spilling scenario in Chapter 8 and the related work

in Chapter 9 followed by a note of conclusion and future work in Chapter 10.

Chapter 2

PostgreSQL’s Cost Model

We start with giving a broad overview of PostgreSQL’s cost model that uses a vector of five

global cost parameters. Let C' be that vector, as follows:

C = [I0_.SEQ_COST, I0O_.RANDOM_COST,CPU_TUP_-COST, CPU_INDEX _COST,
CPU_OP_COST)"

where the cost parameters are defined as:
1. IO_SEQ_-COST: 1/0 cost to sequentially access a page
2. IO_.RANDOM _COST: 1/0 cost to randomly access a page
3. CPU_TUP_COST: CPU cost to process a relation tuple
4. CPU_INDEX _COST: CPU cost to process an index tuple
5. CPU_OP_COST: CPU cost to perform an operation like hash and aggregation

The cost Cp of an operator O in a query plan is given by Cop = NTC where N =
[Ng, N,., N;, N;, N,|T represents the number of pages sequentially accessed, number of pages
randomly accessed, number of relation tuples processed, number of index tuples processed and

number of CPU operations respectively, all during the execution of the operator O.

2.1 Tuning PostgreSQL’s Cost Parameters
Postgres assigns default values to the vector C ([1, 4, 0.01, 0.05, 0.0025]7) keeping IO_SEQ_COST

as the base value and other parameters’ values relative to it. Thus, the estimated cost of Post-

gres is in JO_SEQ_COST units. To avoid assigning default values and to estimate cost in real

5

time units, Wu et al [15] tune these parameters using a set of calibrating queries. To get the cost
of the whole plan, Postgres adds the cost of the individual operators. This is because Postgres
uses a single-threaded process to execute a query plan. Thus, at one time, only one operator
operates resulting in no parallel computations. Further, since it is a pull-based execution model

(i.e. to get a tuple, the parent node has to ask the child node), CPU computations and disk

fetches do not overlap.

Sort Pest: 3s
Pest: 605 Qe 4
Oest: 135 Act: 2
SELECT * Act: 12s Merge Join
Pest: 505
FROM info_type it, / O“l. s
esl.
movie_info mi Pest: <1ms Sort Act: 4s
WHERE it.id = mi.info_type_id Qest: <1ms '
AND itl.info = 'genres’ Act: <1ms T T Pect: S5
AND mi.info IN ("Horror', .
QOest: 58
"Action’,'Sci-Fi", Thriller', | Pest: <1ms <263 Seqgean - =
‘Crime’,"War') Oeat: <1ms T
ORDER BY mi.movie_id Act: <Ims ;
= info_type movie_info

Postgres Estimated Plan Time: 118s
Our Estimated Plan Time:28s
Actual Plan Time: 23s

(a) Query Cost Prediction Example 1

Pest: 35
Merge Join Oest: 75

Act: 9s
Pest: <1lms / \
Pest: 703s

Oest: <1ms

Act: <1ms Merge Join Index Scan Oest: 565 SELECT *
\ Act: 53s FROM person_info pi,
Index Sc d aka_name an,
ndex Scan . .
Pest: 1565 pest;",lq;,_-‘:x Scan cast_info cast_info ci
. Oest: 25 WHERE pi.person_id = an.person_id
iui‘ ;s A:: 3 AND an.person_id = ci.person_id
CL: bs :
person_info aka_name

Postgres Estimated Plan Time: 15mins
Our Estimated Plan Time:72s
Actual Plan Time: 71s

(b) Query Cost Prediction Example 2

Figure 2.1: Predictions of query execution times on two example plans

2.2 Examples

Figure 2.1 shows an example of two queries (part of JOB queries 18b and 7a) executed on Post-
gres. Figures 2.1a and 2.1b show their query plans annotated with the Wu-tuned PostgreSQL’s
estimations (P.s) and our estimations (O.y) for each operator, along with the actual execution
times (Act). In Example 1, Postgres overestimated the cost of query plan (2 mins instead
of 23s), mostly due to overestimating the cost of all sort operators. This is broadly because
Postgres charged a sort comparison cost (CPU_-OP_COST) of eleven times higher than the
actual sort comparison cost (which we locally tuned using a calibrating query to get the cost
right). Similarly in Example 2, Postgres predicted the cost of plan as 15 mins whereas it was ac-
tually only 71s. This was mostly because it overestimated the costs of all Index Scan operators
based on uniform tuple distribution assumption across all pages which led to overestimations
in number of pages predicted to be scanned from the disk. The input cardinality estimates in

each operator are ensured to be perfect, thus the errors are only due to cost modelling.

Chapter 3

Prediction of Scan Operators

SELECT *
FROM R
WHERE vl < A <v2

Figure 3.1: Scan Query Template Q(R, A, v1,v2)

Scan operators can take up a lot of total execution time of a query, especially in the case of
disk-resident databases, and thus their accurate prediction is important. There are mainly two
types of scan techniques that DBMSes use — sequential scan and index scan. For the sake of
convenience, let us assume a SQL query Q < R, A,v1,v2 > (Figure 3.1). Executing Q returns
the tuples from relation R whose values of attribute A lie between v1 and v2 (both inclusive).
Note that other forms of predicates (i.e. with <,>,==,! =) can be easily converted into the
form of Q. Also, an absence of the upper (and/or lower bound) on the attribute value simply
means presence of the default maximum (and/or minimum value) of the attribute. We will now

discuss both the scan operators in detail.

3.1 Sequential Scan

Given a query (Q < R, A,v1,v2 >, the sequential scan operator sequentially reads the consecu-

tive pages of the relation R while filtering out tuples based on the given filter. Thus:
Estimated Cost = IO_SEQ_COST x n + CPUTUP_COST x t

where n = total pages and t = total tuples in the relation R. We evaluated Wu-tuned Post-
greSQL’s predictions on all relations in JOB for sequential scan and all the queries were found

to have a relative error of < 1%. Thus, we use PostgreSQL’s model for sequential scan as it is.

Range Est Est Est Act Act Act | EstCost | Act | Est Total Cost
(in 1075) Rel Index | Total Rel Index | Corr | with Act | Time | with Act values
Pages | Pages | Cost | Pages | Pages values / Act Time
[0.1,0.9] |132285| 614 400s | 4294 621 0.09 15s 4s 4.2
[7.7,15] |161892 | 6188 | 509s | 29386 | 6168 | -0.08 109s 18s 6
[0.6,19.6] | 268815 | 22514 | 560s | 96003 | 22443 | 0.06 362s 67s 5.4

Figure 3.2: Analysis of PostgreSQL’s cost model for Index Scan

3.2 Index Scan

Apart from the range filter predicate (vl < A < v2), there can be another type of filter
predicate: equality predicate (A = v). In isolation, the equality predicate can be seen as a
range predicate (v < A < v), but in a plan setting, the equality predicate has to be treated
differently. We defer this discussion to Section 5.1 and focus only on the range predicate here.

During range index scan, Postgres first reads the index pages from root to the first
leaf (containing value v1), then reads the data pages corresponding to the values present in
that leaf (in order), then reads the next index leaf page and repeats the procedure until the the
last value v2 has been read. The index scan operator is particularly hard to predict because
Postgres accesses the data pages in ascending order of attribute values from v1 to v2, physical
locations of which can be in any order or even in different parts of the disk due to fragmentation.
Due to this, time to access data pages can vary depending on the physical distance between
them. Data pages once accessed previously may also be found cached in memory. Due to this,
predicting the number of pages to be scanned from disk solely based on tuple cardinality is

challenging.

3.2.1 PostgreSQL’s Cost Model of Index Scan

To keep it brief, we have omitted the parts of the model that estimate the time spent in scanning
index pages from root to leaf, and the CPU cost of processing the index and relation tuples,
which are negligible compared to I/O time of relation and index pages.

For each index on each relation, Postgres maintains a correlation factor (corr) between
the attribute values and their respective data page ids (using Pearson Correlation Coefficient
formula), which is essentially a measure of the randomness in the data layout of that attribute.
Corr = 1 means the index is clustered (the order of attribute values in index is same as the

order of attribute values in the relation i.e. ascending order). Corr = —1 means descending

order and corr = 0 means maximum randomness in the data layout of the attribute. Using
corr value, Postgres interpolates between the minimum cost (MinC: cost of scanning pages
sequentially) and maximum cost (MaxC": cost of scanning pages from random locations) to

estimate the cost C'(R) of index scan on relation R using the following formula:

C(R) = corr*(MinC) + MaxC(1 — corr?)
MinC' = relation_selectivity = total_relation_pages x [O_SEQ_-COST

MaxC = estimated_relation_pages * [O_RANDOM _COST

where estimated_relation_pages is found by the Mackert and Lohman (M&L) approximation

model [8]. Further, estimated cost to read index pages (C([)) is given as:
C(I) = relation_selectivity = total index_pages * IO_-RANDOM _COST
Thus, the total estimated cost by Postgres is given as:
TC =C(R)+C(I)
3.2.1.1 Shortcomings

The above cost model for index scan, however, suffers from the following critical limitations:

1. It uses the same value of corr and IO_RANDOM _COST for all ranges, which can be
different for different ranges. For instance, in Figure 3.2, we ran a few index scan queries
on the movie_id attribute of the movie_in fo relation (from the IMDB dataset) for which
the estimated and actual values of the variables used in aforementioned cost model of index
scan are shown. The corr value of the attribute (movie_id) is 0.1 but the actual corr of
the last query is almost half. Similarly, another range (in Figure 3.3a, Range:[0,250392],

of which we will talk about later) has corr value of 0.003.

2. The M&L formula assumes a) uniform distribution of tuples across data pages, b) uniform
duplicate distribution across attribute domain and that ¢) the memory buffer follows the
LRU policy, among other assumptions, which are not very realistic. As seen in Figure
3.2, the estimated number of relation pages using this approximation model are far more

than the actual number of relation pages scanned.

3. The cost model for index scan itself is questionable as it gives inaccurate estimations even
after replacing the estimated values of all the above input parameters with actual values.

Note that the ratio of the estimated total cost with actual values and actual time is also

10

different for the queries. Thus, a magic number to multiply with the estimated cost to

get actual time is not possible.

3.2.2 Our Cost Model of Index Scan

PostgreSQL’s model went for a toss because of its global view of the relation being scanned. To
capture local view, we try partitioning the attribute domain such that in each partition, data
follows similar properties like correlation, tuple distribution across pages and disk location. So,
if a range falls inside a partition, it can be easily predicted (as we will show below) and if it
falls across partitions, then we can predict contribution of each partition to the total execution

time. Let us explain our training and prediction procedures using an example:
3.2.2.1 Training Procedure
1. Generate the (blue-coloured) curve in Figure 3.3a by executing the following query:

select = from movie_sinfo where b < movie_id < v

where [b(= 0) is the lower bound on movie_id and variable v is increased in a fixed
intervals. Note that the x-axis is cardinality and not the attribute value. The resulting
blue curve can be approximated with a linear piecewise function (shown in black colour).
Here, three lines were sufficient giving us two inflexion points. For the sake of simplicity,
let’s call the starting point and end point as inflexion points as well. Thus, we have a
total of four inflexion points - Iy, I, I3 and I;. The point I here represents a change in
the correlation. For range I to Iy, the corr value was 0.003 but for range I, to I3, the
value increased to 0.06 due to proximity of data pages, thus giving a decrease in slope as
the cardinality increased. Further, around 10% of the data pages scanned in range [Is,

I3] were found cached in memory (already scanned in range [I;, I5]).

2. Suppose we want to predict execution time for a range between I; and I,. Then, we do it
only using the Curve 1. But if we want to predict for a range between, say I, and I3, we
cannot use only the Curve 1 as this will be an underestimation because of the decrease in
slope due to caching effect. Thus, we need a fresh curve which starts from the point I5.
So, create a new curve (Figure 3.3b) with the second inflexion point I (in Figure 3.3a)
as the starting point. We obtained three inflexion points in Figure 3.3b after piecewise
linear curve fitting. The corr value of range I, to I3 was almost same as that of I3 to
I, but “half” of the data pages accessed in the latter range were already accessed in the

former range, thus decreasing the slope due to caching effect.

11

= actual time == predictions

100 Is: movie_id = 2522054

s

] 75

w0

é % 13: movie_id = 1902441

@]

£ >0 o

= Tz

|

S 2 g

3 253 £

i B

0 : 25 5.0 7.5 10.0 l 125
Carda : : : ~ Cards T
Cardinality (in millions)
(a) Curve 1
= actual time == predictions
100 Is: movie_id = 2522054

)
S 75
w
= Ia: movie_id = 1002441
[«3]}
E 50
I=
[=
i=]
3 25
43}
>
w

l2: movie_id = 250392

2.5 5.0 7.5 Calrda 10.0 125

Cardinality (in millions)

(b) Curve 2

Figure 3.3: Training Curves 1 and 2 for Prediction of Range Index Scan

3. Repeat step 2 to get the learned curves 3 and 4 (Figures 3.4a and 3.4b) until no new in-
ternal inflexion points are required. At point I, again there was an increase of correlation
from -0.02 to 0.03 and around 20% of data pages accessed were already found cached. The

requirement of an inflexion point is decided based on training error. If error on each point

12

Execution Time (in secs)

Execution Time (in secs)

= actual time = predictions
60

Is: movie_id = 2522054

40

lazmovie_id = 2066397

20

Ia: movie id = 1902441

0 [
3 4 5 6 7
Carde
Cardinality (in millions)
(a) Curve 3
= actual time = predictions
50

Is: movie_id = 2522054

: movie_id = 2066397

1 2 3 4 5

Cardinality (in millions)

(b) Curve 4

Figure 3.4: Training Curves 3 and 4 for Prediction of Range Index Scan

of the training curve is less than a pre-determined threshold (5 seconds here), then we
need only one line (i.e. zero internal inflexion points) for fitting. The final set of inflexion
points is the union of inflexion points in all curves. While generating a new curve at any

step, most of the inflexion points either repeat from the old set or lie very close. The

13

inflexion points that lie close can be clubbed into one by taking the average. Note that

in our example, we have got five inflexion points, I; to Is.

3.2.2.2 Prediction Procedure
Suppose we want to predict execution time of the query:
select * from movie_info where A < movie_id < B

where A and B are constants. Let’s call the curves got in the training phase as Ci, Cs, ...,
Cy, (m = 4 in our example) and the inflexion points as Iy, I,..., I, (n = 5 in our example).
First, the points A and B are mapped to their respective cardinalities, which we learnt using
piecewise linear approximation as well. Let’s call the cardinalities w.r.t. attribute values
A and B as card and cardg. Suppose the range [carda,cardpg] lies between I; and Iy, as
shown in Figure 3.4. Then the range [cardy, cardg| is partitioned by the inflexion points into
three partitions - [carda, o], [I2, I3] and [I3, cardg]. We need to predict time spent in each of
these partitions. Let’s call the contribution by curve Cy for a partition [i, j] as Cy(i, 7), where
Cr(i,j) = Cx(Iy, j) — Cr(Ix, i — 1) where I} is the first inflexion point in the curve C%. One way
to predict total execution time for range [carda, cardp] is to simply add Cy(carda, Is), Co(lz, I3)
and C3(13, cardg). But this way, we are ignoring the caching effect of range [carda, I] on range
[I5, I3] and of range [card 4, I3] on range [I3, cardp]. To tackle this problem, we apply a heuristic
of averaging the time across all curves for every partition. For example, for partition [Io, 3],
we average time predicted by Curve 1 and Curve 2 which, for this particular partition, consider
and do not consider the caching effect of range [carda, I5] respectively. Then the predicted

execution time for the aforementioned query will be given by:

Predicted time = Cy(cardy, Is) + avg(Ci(1z, I3), Co(1a, I3)) +
avg(C (I3, cardg), Cy(1s,cardg), Cs(Is,cardg))

A simple case would be when the range [cardy, cardg] lies in, say the range [Is, I3].
Then, predicted time would simply be Cy(carda, cardg). Note that the first curve to contribute
to the predicted time is the one for which there is no internal inflexion point before card. The
rest of the curves are simply the ones which contain a portion of the range. The intuition
behind the model is that the inflexion points capture the change in increase of execution time
due to factors like fragmentation or caching or correlation effect. The predictions of the queries

in Figure 3.2 using our model were 4s, 21s and 64s respectively.

14

Chapter 4

Prediction of Sort Operator

SELECT *
FROM R
ORDER BY A1, A2, .. , Ak

Figure 4.1: Sort Query Template Q(R, {Al, A2, .., Ak})

Given a query @ (Figure 4.1), Postgres uses quicksort to sort the relation R on the ordered set
of k attributes {A1, A2, ..., Ak}.

4.1 PostgreSQL’s Cost Model for Sort

Assuming the cardinality of relation R is n, Postgres charges an expected comparison cost of
O(nlogn) (multiplied with 2 * CPU_OP_COST - a heuristic for a single unit of comparison
cost). It also charges an output processing cost of CPU_OP_COST per tuple, which is the
case for all operators as we will see.

Thus, Postgres’ cost formula for sorting is as follows:
Comparison Cost =2 x CPU_OP_COST xinput_card x logs(input_card)
Output Cost = CPU_OP_COST x input_card

Final Cost = Comparison Cost + Output Cost

4.1.1 Shortcomings

The caveats in the Postgres’ model are as follows:

1. The execution time of sorting a relation depends not only on the number of comparisons

but also on the actual movement of tuples. The latter is dependent primarily on two data

15

Query Actual | Postgres | Ours
1 | select * from cast_info order by person_id 13s 144s 14s
2 | select * from cast_info order by movie_id 18s 144s 19s
4 | select * from cast_info order by role_id 9s 144s 11s
5 | select * from cast_info order by person_id, movie_id 25s 144s 29s
6 select * from cast_info order by movie_id, person_id 32s 144s 34s
7 select * from cast_info order by person_id, role_id 21s 144s 24s
9 | select * from cast_info order by role_id , person_id, movie_id 27s 144s 43s
10 | select * from cast_info order by movie_id, role_id, person_id 455 144s 48s

Figure 4.2: Sort Operator Examples

properties: pre-sortedness and duplication factor. For example, a pre-sorted array will
incur zero tuple movement cost, and an array that is not pre-sorted but has large number
of duplicates (for instance, an array of only two distinct values occurring consecutively)
will also incur very less movement cost. Though the duplication factor can be seen
as a specific case of pre-sortedness, we see these two differently because of the way we
measure them. For a single attribute, we measure pre-sortedness as the (absolute value of)
correlation coefficient (corr) between an array and its sorted counterpart, and duplication
factor (dup) as:

— #distinct_val
dup(#rows, #distinct_values) = #rows — distinct values
#rows — 1

. Postgres does not take into consideration the number of attributes (k) in cost estimation.
Thus, for any number of attributes, Postgres’ estimated cost of the sort query remains
same. For example, in Figure 4.2, we ran a couple of queries on the same relation cast_in fo
but different ORDER BY clauses. But Postgres predicted same cost of all queries no

matter how many or what attributes there were in the Order By clause.

. As a result of above, Postgres ignores the order of attributes as well. It’s important to
consider the order because, for instance, if the first attribute has all distinct values, then
the subsequent attributes will not even be considered for comparison. On the other hand,
if the first attribute has all elements same, then the next attribute will decide the sorting

order and thus add to the sorting cost.

16

4.2 Our Cost Model for Sort

Algorithm 1: For prediction of sorting cost of an ordered set of attributes

Function Cost_Sort_Single_Attr
Input: corr, dup, input_card

Output: sorting cost of a single attribute

comparison cost = COMPARISON _COST x input_card x logs(input_card);

movement cost = (1 — (W x corr + (1 — W) * dup)) *
MOVEMENT_COST xinput_card x logs(input_card);

return comparison cost + movement cost;

Function Cost_Sort
Input: num_attributes, corr[], dup[|, input_card

Output: sorting cost of an ordered set of attributes
total _cost = 0;

current_dup = 1,

current_corr = 1;

for : = 0; ¢+ < num_cols; 1+ + do
total_cost + = current_dup x Cost_Sort_Single_Attr (current_corr x

corr[i], dupli], input_card);
current_corr x = corrlil;
end
output_cost = CPU_TUPLE _COST x input_card,

return total_cost + output_cost;

There are three major costs involved in sorting - comparison cost, movement cost
and output cost. We introduce two new local cost parameters - COMPARISON_COST and
MOVEMENT _COST. The former is tuned on an attribute with no expected movement (i.e.
corr = 1) and the latter is tuned on an attribute with maximum movement (i.e. corr = 0,
dup = 0). The COMPARISON _COST was found to be around eleven times lower and the
MOVEMENT _COST around four times lower than the CPU_OP_COST on our machine.
For example, for first query in Figure 4.2, Postgres estimated 144s for sorting on attribute
person_id of relation cast_info when in fact, the actual time was very less (13s). Our model

predicted a comparison cost of 6s and a movement cost of 7s (corr = 0.7, dup = 0.8). Similarly,

17

After Correlation (corr) Duplication Factor (dup)
Operator
0 | Seqscan | Remains unchanged Remains unchanged
1 | Index corr[non-index attribute] *= corr[index attribute] Remains unchanged
scan corr[index attribute] = 1
2 | Sort corr[non-sort attribute] *= corr[sort attribute] Remains unchanged
corr|sort attribute] = 1
3 | Nested For attributes of outer relation, values remain unchanged | For both inner and outer relations,
Loop Join a. dup[join attribute] =
For attributes of inner relation, dupljoin attribute of outer relation] *
a. corr[join attribute] = dupljoin attribute of outer relation]
corr|join attribute of outer relation]
b. corr[non-join attribute] *= b. dup[non-join attribute] *=
corr|join attribute of outer relation] dup[join attribute]
4 | Sort Remains unchanged Same as in 3
Merge
Join

Figure 4.3: Heuristics for change in corr and dup values of an attribute in a plan

our model predicted a comparison cost of 6s for both second and third query but a movement
cost of 13s for movie_id (corr = 0.005, dup = 0.9) and 5s for role_id (corr =1, dup = 0.9).

In case of multiple attributes, the first attribute (A1) will contribute all the sorting
time that it would if it were in isolation. The contribution of the second attribute (A2) is
dependent on dup[Al]. If dup[Al] =1, A2 will also contribute all the sorting time that it would
if it were in isolation. But if dup[A1] = 0, this means A1 has all distinct elements and thus, there
won’t be any contribution to sorting time from A2 to Ak. We apply the heuristic of multiplying
the sorting time of A2 with dup[Al] to get its contribution. Similarly with the subsequent
attributes. Note that we are assuming attribute value independence here. Algorithm 1 shows
the prediction algorithm in which the main function Cost_Sort calls Cost_Sort_Single_Attr
to calculate the contribution of every attribute in the Order By clause. Note that in the
movement_cost, W is a weight parameter discovered during tuning that decides how much
weight is given to corr and how much to dup. In our experiments, W was set to 0.4.

The corr and dup values for all attributes of all relations are kept pre-computed in
the pre-compilation phase. However, the values of the intermediate relations that a plan may
generate are unknown beforehand. In Figure 4.3, we came up with a set of simple rules on
how corr and dup values can change when a certain operation occurs. The rules have been

kept simple because it is difficult to calculate the exact values of corr and dup for intermediate

18

relations without keeping significant amount of metadata. The assumption of attribute value
independence holds here as well. These formulae are w.r.t. a single attribute. The formulae for

the case of multiple attributes are easily derivable.

19

Chapter 5

Prediction of Join Operators

SELECT *
FROM R1, R2
WHERE R1.A1=R2.B1 AND .. AND R1.Ak=R2.Bk

Figure 5.1: Join Query Template Q(R1, R2,{{Al, B1}, .., {Ak, Bk}})

Given a query Q (Figure 5.1) with two input relations R1 and R2 and a number of join predicates
(of type R1.Ai = R2.B1), Postgres can choose any join operator among Nested Loop Join (NLJ),
Sort Merge Join (SMJ) and Hash Join to execute the join operation. In this work, we only talk

about prediction of NLJ and SMJ operators in detail below.

5.1 Nested Loop Join

Given a query Q (Figure 5.1), Postgres executes the NLJ operator as follows - for each tuple
scanned from the outer relation, Postgres loops through the inner relation and checks for the
tuples that join with the tuple from outer relation based on the predicate conditions. However,

there are a few exceptions to this execution behaviour:

e Case 1: When the joining attribute(s) of inner relation is known to be unique (for instance,
in presence of PRIMARY KEY or UNIQUE constraint), for every outer relation tuple,

the loop on the inner relation stops if and when the unique value is found.

e Case 2: If the right child of NLJ is an index scan, only the tuples of the inner relation

corresponding to each outer tuple are scanned using index.

5.1.1 PostgreSQL’s Cost Model for Nested Loop Join

Postgres charges a processing cost and a predicate evaluation cost for NLJ. Another cost called

rescan cost is charged for scanning the tuples from the relation present in memory after being

20

scanned from disk. It is called rescan cost to differentiate from the first scan that happens from
disk.
Rescan Cost = CPU_OP_COST xinner_rel_card * outer_rel_card

Processing Cost = CPU_TUP_COST xinner_rel_card = outer_rel_card

Predicate Evaluation Cost = CPU_OP_COST x #join_predicates * inner_rel_card *

outer_rel_card

Final Cost = Rescan Cost + Processing Cost + Predicate Evaluation Cost

For case 1, the expected number of probes in inner relation for each “matched” outer
relation tuple is half the total size of the inner relation while for an “unmatched” tuple, the
whole inner relation is probed. For case 2, Postgres uses the same model that it uses for index

scan in isolation with a few minor changes.

5.1.2 Our Cost Model for Nested Loop Join

Postgres was found to overestimate the execution time of NLJ in all the cases. We have replaced

the global cost parameters with local parameters in the above cost functions as follows:

Rescan Cost = CPU_RESCAN _COST x inner_card * outer_card
Processing Cost = NLJ_PROCESSING_COST x inner_rel_card * outer_rel_card

Predicate Evaluation Cost = JOIN_PRED _EV AL COST % #join_predicates %

inner_rel_card * outer_rel_card

Output Cost = CPU_TUP_COST % output_card
Final Cost = Rescan Cost + Processing Cost + Predicate Evaluation Cost + Output Cost

The cost parameters CPU_RESCAN _COST and JOIN_PRED_EV AL COST were
found to be around two times and six times lower than CPU_OP_COS'T respectively after tun-
ing and NLJ_PROCESSING_COST was found to be a little lower than CPU_TUP_COST.
CPU_RESCAN_COST can be tuned using any NLJ query because the rescanning cost is
explicitly shown in PostgreSQL’s output query plan. NLJ PROCESSING_COST can be
tuned by running an NLJ query with zero predicates and JOIN _PRED_EV AL_COST can be
tuned using a single predicate and then subtracting the costs of other NLJ cost functions.

We handle Case 1 like Postgres does, because in expectation (as confirmed experimen-

21

tally), for each matched outer tuple, the fraction of inner table scanned is usually half. Coming
to Case 2, since Postgres’ model of this case is just an extension of index scan in isolation,
the problems remain the same. However, single index scan is one-time and join index-scan is
repetitive, and therefore brings in more caching effects. So to model this case, we again use the

power of machine learning.

Query Actual | Postgres | Ours

1 |select * from cast_info ci, movie_info mi where 78s 135s 87s
ci.movie_id = mi.movie_id and ci.movie_id<10000 and
mi.movie_id<1000

2 |select * from cast_info ci, movie_info mi where | 159s 240s 180s
ci.movie_id = mi.movie_id and ci.movie_id<15000 and
mi.movie_id<1500 and ci.person_id = mi.info_type_id

3 select * from movie_link ml, complete_cast cc where | 572s 910s 587s
ml.movie_id = cc.movie_id

4 | select * from movie_link ml, complete_cast cc where 46s 67s 47s
ml.movie_id = cc.movie_id and mllink_type_id =
cc.status_id and ml.id<3000 and cc.id<100000

5 |select * from person_info pi, name n where pi.person_id | 64s 97s 61s
= n.id and n.id<=10000 and pi.id<=50000

6 |select * from person_info pi, name n where pi.person_id | 121s 194s 121s
= n.id and n.id<=9000 and pi.id<=100000

7 select * from cast_info ci, movie_companies mc where 13s 61s 14s
ci.movie_id = mc.movie_id and ci.movie_id<=100000

8 |select * from movie_info mi, company_name cn where 10s 24s 10s
mi.movie_id = cn.id and mi.movie_id<=200000

9 | select * from cast_info ci, movie_companies mc where 25s 120s 15s
ci.movie_id = mc.movie_id and ci.movie_id<=500000

Figure 5.2: Nested Loop Join Operator Examples

Note that Case 2 is a much harder problem than single index scan and cannot be
dealt with the way we modelled single index scan - i.e. pre-processing on the data layout of
relations because then we will have to pre-process on each possible stream of numbers (which are
exponential in number) unlike single index scan (in which case we had to pre-process only on the
stream of attribute values in ascending order). Instead, we have tried learning a piecewise linear
approximation curve which predicts execution time of scanning the right relation for a given

cardinality of distinct values from the left relation. For each index attribute on each relation,

22

the training data was created by randomly sampling a fixed number, say t, of instances of k
random unique values in the domain of the index attribute. Here, k is varied from minimum
to maximum domain value of the index attribute in fixed intervals. So, for k unique values
coming from the left child, we predict execution time of scanning those k unique values in the
right child relation based on the t instances available. However, note that we do not know the
number of distinct values coming from the left child of the NLJ operator. So, for this, we use
the dup factor (as computed in Figure 4.3) on the left child’s joining attribute.

In Figure 5.2, we have shown examples of a couple of queries on the IMDB database.
The queries 1 to 4 are for the regular case, queries 5 and 6 are for case 1 and queries 7 to 9 are

for case 2. We talk about more extensive evaluation in Chapter 7.

5.2 Sort Merge Join

For the same join query in Figure 5.1, SMJ operator first sorts the two input relations on the
joining attributes and then merges them using the merge operation. In presence of duplicates
in the outer relation, the corresponding tuples in the inner relation could be scanned multiple
times. The output cardinality of the join can be seen as a reasonable measure of the number

of tuples rescanned from the inner relation.

5.2.1 PostgreSQL’s Cost Model for Sort Merge Join

Just like in NLJ, Postgres charges a Processing C'ost, Predicate Evaluation Cost and Output C'ost

here as well. The Rescan Cost of tuples from inner relation are accounted for in the Processing C'ost

itself. Note that all these cost functions use the same global cost parameter CPU_OP_COST.
Processing Cost = CPU_OP_COST =« (outer_rel_card + output_card)
Predicate Evaluation Cost = CPU_OP_COST x #join_predicates * output_card
Output Cost = CPU_OP_COST % output_card

Final Cost = Processing Cost + Predicate Evaluation Cost + Output Cost

5.2.2 Our Cost Model for Sort Merge Join

Like NLJ, we have replaced the global cost parameters in the cost functions with new local cost

parameters in the light of few limitations in Postgres’ model, as follows:
Rescan Cost = CPU_RESCAN_COST x max(output_card — inner_card,0)
Processing Cost = SMJ_PROCESSING_COST % output_card

23

Output Cost = CPU_TUP_COST x output_card

Predicate Fvaluation Cost = JOIN_PRED_EV AL COST % #join_predicates xoutput_card

Final Cost = Rescan Cost + Processing Cost + Predicate Evaluation Cost + Output Cost

Query Actual | Postgres Ours
(Outer Sort, | (Outer Sort, | (Outer Sort
Inner Sort, Inner Sort, Inner Sort,

Merge) Merge) Merge)

1 | select * from cast_info ci, movie_info mi 6.6s, 56s, 7.8s,

where ci.movie_id = mi.movie_id 38s, 168s, 39.7s,
120s 71s 124s

2 | select * from cast_info ci, movie_info mi 23.4, 144s, 28.6s,

where ci.movie_id = mi.movie_id and 16s, 56s, 13.5s,
ci.person_id = info_type_id 2s 0.1s 3.5s
3 | select * from cast_info ci, movie_keyword mk 1.5s, 16s, 1.4s

where ci.movie_id = mk.movie_id 26.8s, 180s, 19.7s,
57s 10s 60s

4 | select * from cast_info ci, movie_keyword mk 44 .8s, 144s, 30.2s,
where ci.movie_id = mk.movie_id and 4.3s, 16s, 3.5s,
ci.person_role_id = mk.keyword_id 2s 0.1s 2.8s

5 | select * from movie_info mi, movie_keyword mk 1.3s, 16s, 1.4s,
where mi.movie_id = mk.movie_id 16s, 74ds, 17s,
49.3s 13s 66.8s

6 | select * from movie_info mi, movie_keyword mk 16.2s, 56s, 13.5s,
where mi.movie_id = mk.movie_id and 2.9s, 16s, 2.4s,
mi.info_type_id = mk.keyword_id 2.2s 1.5s 2.5s

Figure 5.3: Sort Merge Join Operator Examples

Like in NLJ, we replaced the global cost parameter CPU_OP_COST with local param-
eters SMJ_PROCESSING_COST and JOIN_PRED_EV AL _COST in Processing Cost
and Predicate Evaluation Cost respectively, which are easily tunable using two SMJ queries,
former with zero predicates and zero duplicates in outer relation and latter with an SMJ query
with one predicate and zero duplicates. Further, we broke Postgres’ Processing Cost for-
mula into Rescan Cost and Processing Cost to tune a new local parameter RESCAN_COST
separately.

In Figure 5.3, we show a few example queries executed on IMDB dataset, along with
the actual execution times, Postgres’ estimated times and our predicted times for the outer sort

operation, inner sort (+ rescan) operation and the merge operation.

24

Chapter 6

Prediction of Group By Operator with
Aggregation

SELECT agg(B1), agg(B2),.., agg(Bm)
FROM R
GROUP BY A1, A2, .., Ak

Figure 6.1: Group By with Aggregate Query Template Q(R, {Al, A2, .., Ak}, {B1, B2,.., Bm})

Given an aggregate query Q (Figure 6.1) which groups the relation R on an ordered set of
attributes {Al, A2, ..., Ak} and applies aggregation function (agg = count/sum/avg/min/max)
on attributes B1, B2, ..., Bm, Postgres can implement the Group By with Aggregate operation

in either of the two following ways:

e SORT-AGGREGATE: This method first sorts the relation on the Group By attributes
and then applies aggregation. Aggregation takes one pass through the relation and finds
values of each aggregate function for each group. Note that for each tuple, a comparison

is done with the previous tuple to check if it belongs to the previous group or it’s a new

group.

e HASH-AGGREGATE: This method first inserts the tuples of the relation into a hash
table based on the hashing of the Group By attributes and then applies aggregation for
each hash bucket. Note that since there can be collisions in the hash bucket, comparisons

are required here as well.

Postgres uses the same model for both of the above scenarios, which is as follows:

Group Comparison Cost = CPU_OP_COST x num_group_by_columns * input_card

25

Aggregation Cost = CPU_OP_COST * num_aggregation_columns * input_card
Output Cost = CPU_TUP_COST * num_groups
Final Cost = Group Comparison Cost + Aggregation Cost + Output Cost

Since JOB queries do not have Group By clause, we created a new set of queries by
adding Group By clauses to JOB queries and tested Postgres’ model on it. The estimations
were very close to accurate on the queries, incurring a relative error of less than 10% on most

of them. Thus, we use PostgreSQL’s model as it is.

26

Chapter 7
Experiments

In this chapter, we evaluate our cost model against a well-tuned PostgreSQL’s cost model. To
reiterate, we have taken the following assumptions for our execution environment: a) Single
query and isolated environment (i.e. no other user processes running on the system), b) Disk-
resident database, ¢) Cold cache (i.e. memory is cleared before running a query), d) Indexes
built only on numerical attributes and d) Perfect cardinality estimates. All experiments are
run on an Intel Core 19-7900X machine with 3.30GHz CPU, 32GB RAM, 2TB 7200RPM HDD
and 64-bit Ubuntu 18.04. In this chapter, we consider the no spilling scenario and defer its

discussion to the next chapter.

7.1 Evaluation Benchmark

We evaluate our model on the Join Order Benchmark (JOB [6]). However, we do not evaluate
on the original query plans we got by executing JOB queries on PostgreSQL’s native optimiser.
Rather, we have created a host of six different suites of query plans using JOB queries for
training purposes because of class bias in the operator frequencies of the original plans. We
forced different combinations of possible choices of operators (by changing the configuration
parameters of PostgreSQL) and came up with the following suites (each query plan has scan

operators, join operators and an aggregate operator):

e Suite 1: Scan: Sequential, Join: NLJ
e Suite 2: Scan: Sequential, Join: SMJ
e Suite 3: Scan: Sequential (all filters removed), Join: SMJ

e Suite 4: Scan: Sequential, Join: Any

27

e Suite 5: Scan: Index, Join: SMJ

e Suite 6: Scan: Any, Join: Any

The Suite 1 forces Sequential scan and NLJ operator on the optimiser. The execution times of
query plans in this suite range from a 5 secs to a 5 hours. The Suite 2 forces Sequential scan
and SMJ operator. The execution times of these query plans are all under 1 min. Thus we
created another suite (Suite 3) by removing all scan filters to test our model on high execution
times as well. Suite 4 forces only Sequential scan and leaves it on the native optimiser to pick
from NLJ and SMJ operators for join operation (the presence of these two operators in the
plans we got is almost equal). This way, we can do evaluation on interaction between the two
join operators. Suite 5 forces Index scan and SMJ operator and Suite 6 does not force any
operator. These two suites are for evaluation of index scan in isolation (as child nodes of SM.J
and left child of NLJ) and as right child of NLJ. We did not create a separate suite by forcing
Index Scan and NLJ because in Suite 6, most of the join operators were NLJ with index scan,
thus avoiding redundancy. And we did not create another suite by forcing Index Scan with Any
Join operator because we are already testing interaction between NLJ and MJ in Suite 4. JOB
queries do not have GROUP BY clause by default and we did not add them in these suites
so as to focus on the errors of only error-prone operators. We have further made sure that all

plans are unique.

7.2 Performance Evaluation

For each query plan, we measure the Qerror for PostgreSQL’s model and our model, where

Qerror(actual execution time(time,.), estimated execution time(time.s)) is defined as:

timege: timeegy

Qerror(timege, timees;) = max(e
est act

For any query plan, the goal is to get a Qerror of as close as possible to 1. Note that since
Qerror is a multiplicative error, Qerror of, say 2 for a plan with execution time 10s means an
estimated time of 5s or 20s but for a plan with execution time 60 mins, it means an estimation
of 30 mins or 120 mins. Thus, the former estimation is not so bad in comparison to the latter.
For all the graphs below, the query plans have been ordered in the increasing order of execution
times from left to right. For each suite, we use the vector [mean Qerror, median Qerror, max
Qerror| as the evaluation metric (P for Postgres and O for ours). Further, for each suite, we

show Qerrors on per-query basis in bar graphs as well. As visible in graphs of all suites (Figures

28

® Our Qerror ™ PostgreSQL's Qerror
2.0

15

Qerror

1.0 ‘

0.5

0.0
11b 5a 1la 6a 1la 7a 9a 8a 10b 3a 10a 12a 4a 2a

Query

Figure 7.1: Performance on Suite 1

7.1 to 7.6), for each single query, we estimate better than Postgres. For every suite, we have

removed the outliers. Keeping this in mind, the evaluation on the suites is as follows:

Suite 1: The execution times of these 15 plans (Figure 7.1) range from 5s to 5 hours. First
12 plans are under 10 mins. Last 3 plans took 24 mins, 25 mins and 5 hours respectively.
Here, Py : [1.5,1.6,1.8],O¢ : [1.06,1.04,1.18]. Postgres overestimated the execution times
of all of these plans. For example, for the plan 4a, the actual time was 25 mins. Postgres
predicted it to be 40 mins but by simply tuning the local cost parameter of NLJ, we
brought the prediction to 25.5 mins.

B Our Qerror W PostgreSQL's Qerror

Qerror
=] ~
i =i
sl —
P S———
P ————
S
1 —
e —
=

aa8
mmm

Figure 7.2: Performance on Suite 2

29

Suite 2: The execution times of these 108 plans range from 3s to 47s in the Figure 7.2. Here,
Py =[3.5,2.8,6.6] and Og = [1.1,1.1,1.3]. Postgres overestimated the times of all these
plans mostly because of overestimations on the sort operator. For example, for the plan

19d, the actual time was 46s, but Postgres estimated it to be 3 mins and we predicted

52s for it.
W Our Qerror M PostgreSQL's Qerror
6
4
.
2
@
o
0
T ®© 2 U Qo © v o ¢ oo v T o ud 0 uTDT aCoo 9@V e 0 o0V .o T o CT - u o T oo O
S90S SdES8SRRRENGITIIRRSBTESEEEENRES82893 89888
Query
Figure 7.3: Performance on Suite 3
® Our Qerror m PostgreSQL's Qerror
5
4
- 3
e
=
& 2
0
oc O ©
D= O ™ =~
- - N

1c
1b
1d
11b
12b
10b
21b
15d
21c
13a
13d
10c
15b
23b
25b
29b
23a
23c
27b
17a
17t
21a
19d
17e
16b
24b
15a
13b
18b
16a
18a
19a
27c
29a
15¢
26b
22b
12a
28hb
11d
17c
17d
1lc
19¢c
24a
12c
17b
20b
26a
25a
22a
28a
20c
2a
26c
16d
29c
25¢
20a
16¢c
22d
22¢

Figure 7.4: Performance on Suite 4

Suite 3: The execution times of these 49 plans (Figure 7.3) range from 11s to 2.5 hours. The
execution times till the 18b query plan are under 3 mins. From the next plan onwards,
the execution times are more than 7 hours. Note that for 7 hours, even a Qerror of 1.1
means a difference of 40 mins. Here, Py : [2.3,1.5,5.1],0¢ : [1.2,1.1,1.3]. For all these
plans, again Postgres overestimated the times, same as in Suite 2. For example, for plan
18a, the actual time was 11 mins which we predicted as 10 mins but Postgres estimated

as 15 mins.

30

Suite 4: The execution times of these 70 plans (Figure 7.4) range from 4s to 12 hours. First
28 plans (till 1a) have execution times under 1 min. Next 12 plans (till 24b) have times
under 5 mins. Next 6 plans have time under 1 hour and then the execution times increases
gradually. Here, Py : [1.7,1.5,4.7],O¢ : [1.05,1.04,1.2]. The proportion of NLJ and MJ
in these plans is almost equal. So, Postgres’ high Qerrors on MJ are compensated for low
Qerrors on NLJ. But, since the times of some plans are high, even low Qerrors mean grave
differences. For example, for plan 22d, the actual time was 10.5 hours whereas Postgres

predicted 16 hour for it and we predicted 10 hours for it.

B Our Qerror M PostgreSQL's Qerror
40

30
=
S 20
P
&
10
0
VU OoOO0OCOoOLVUTCLUCOoOOCCUQOLOUCOoO0L0UOO0OCLOU T DL O TOCOoOTCLLOLUCOCO O
TATA T NN AN AT T ONOOMUMNANONNONMONDMOUNNOONNRDODODS~OV~0mOmmMmM M
COoOOCOMMOMO OO0 -0 A~ 1NN A A~ 110000000~ 0010 -=1=000C

Query

Figure 7.5: Performance on Suite 5

M Our Qerror M PostgreSQL's Qerror
50

40
30

20

Qerror

10a
26¢
19c
8a
6d
17c
18c
17d
17e
25b
18a
17b
25a
6f
17a
17f
16b
25¢

Figure 7.6: Performance on Suite 6

Suite 5: The execution times of these 49 plans (Figure 7.5) range from 14s to 2mins. Postgres

overestimates the times of these plans due to overestimations on index scans. Here,

31

Py :[14.1,14.8,33.3],0¢ : [1.13,1.08, 1.5]. For example, for plan 7a, the actual time was

1.4 mins which we predicted as 1.3 mins but Postgres estimated as 16 mins.

Suite 6: The execution times of these 72 plans (Figure 7.6) range from 6s to 27 mins. First
30 plans have times under 1 min. Last 16 plans have times over 16 mins. For some plans,
PostgreSQL’s Qerror crosses 50 and reaches even 100. But we have kept the bars till
50 for better visibility. Here, Py : [14.3,6,121.3],O¢ : [2.1,1.5,7.9]. The large Qerrors
in this suite are mostly because of NLJ with index scan operator. Unlike all previous
suites where Postgres overestimated times of each plan, here the estimations are mix of
underestimations and overestimations. For example, for plan 11d, the actual time of 6
secs was overestimated by Postgres (2.5 mins) and us (18s) whereas for plan 8b, the actual

time of 70s was underestimated by Postgres (10s) and overestimated by us (80s).

32

Chapter 8
Spilling

During the execution of a query plan, the executor might have to store the intermediate relations
in memory for further operation. However, if the available memory is insufficient, the executor
might have to spill data to disk. In our setting, where the possible operators in a plan are
scan (sequential and index), sort, join (nested loop join and merge join) and group by with

aggregate, following are the operations that can cause spilling:

1. Sort: If enough memory is available, PostgreSQL uses in-memory quicksort. But in case
a spilling is anticipated (i.e. when the available memory is less than the incoming input

size), PostgreSQL uses external merge sort to sort the input.

2. Index Scan: Due to insufficient available memory, the pages index-scanned previously
might be replaced from memory and thus, may have to be scanned again from the disk.
This compels us to re-consider our cost model of index scan because in our model, we
assumed that any page once accessed from disk can always be found in memory on a
repeated access. For now, we do not tackle this scenario and defer its discussion to the

future work.

3. Materialisation: In all the other cases, when spilling is anticipated, Postgres materialises
the input relation on disk and reads tuples from there. This operation appears as an

explicit materialisation operator in the plan.

For the first and third scenarios, Postgres predicts the number of disk reads/writes and
multiplies it with a heuristic-based cost of accessing the disk. The CPU costs of all operators

remain the same. PostgreSQL’s model for spilling is as follows:
1. For External Merge Sort, Postgres uses the standard algorithm which has the following

33

complexity for number of pages to be read/written from/to the disk:
num_pages = N/B x log;z(N/B)

where N = input_size, B = page_size, M = available_-memory_size, all in bytes. N/B is

the number of runs and M/B is the merge order.

disk_access_cost = IO_SEQ_COST x 0.75 + IO_RANDOM _COST x 0.25

2. For materialisation,

num_pages = N/B

disk_access_cost = IO_SEQ_COST

Thus,

spilling_cost = disk_access_cost * num_pages

In the above model, PostgreSQL was highly overestimating the disk_access_cost be-
cause the swap space of disk for storing intermediate relations was actually way more fast. We
locally tuned the disk_access_cost and found it to be IO_SEQ_COST x 0.25 instead, in both

the scenarios.

Query Actual | Postgres | Ours
1 | select * from cast_info order by person_id 20s 1150s 24s
2 | select * from cast_info order by movie_id 28s 1150s 29s
3 select * from cast_info order by person_id, movie_id 33s 1150s 39s
4 | select * from cast_info order by movie_id, role_id, person_id 35s 1150s 58s
5 | select * from movie_info order by movie_id 10s 6565 13s
6 | select * from movie_info order by info_type_id 7s 6565 12s
7 | select * from movie_info order by info_type_id, movie_id 18s 656s 19s

Figure 8.1: External Sort Examples

Figure 8.1 shows the performance of a few queries on the external sort operator in
isolation. As you can see, Postgres estimated same cost of all sort queries on the same relation
again, irrespective of the sort attributes. Alongwith our cost model for sort (which accounts

for tuple movement cost and differentiates between different ordered set of sorting attributes),

34

the locally tuned disk_access_cost brought down PostgreSQL’s cost to predictions that are very
close to the actual times.

Figure 8.2 is performance of PostgreSQL’s and our cost model on JOB queries. For
these queries, we forced the sequential scan operator and let the optimiser pick the join operator.
The memory buffers available to Postgres here are almost negligible (a configurable parameter).
Although different memory buffer sizes will lead to different spilling scenarios, we show the
worst case for maximum possible disk usage. The execution times of the 13 queries in the
figure increase gradually from 12s to 3 hours from left to right. Here, Py : [6.2,4,19],0q :
[1.16,1.1,1.7].

B Our Qerror M PostgreSQL's Qerror
20

15

10

Qerror

1la 2la 10a 20a 12a 13a 18a 1l7a 19a 16a 23a 22a 15a

Query

Figure 8.2: Spilling query examples

35

Chapter 9

Related Work

Wu et al. followed up on their tuning [15] approach by trying to tackle the noise in the cost
tuning parameters [16], and later ([14]) by using execution feedback on scan operators and
mixed cost estimates on internal operators to solve the problem of relative cost modelling
(which is useful in problems like query optimisation and index tuning). As part of ML-based
research, Chetan et al. [4] used random forest technique on an ensemble of models to give
a band of execution time. Ganapathi et al. [3] took plan-level features of a query plan and
applied a Kernel Canonical Correlation Analysis approach to predict time and other metrics
like CPU usage etc. Akdere et al. [1] went for a hybrid modeling approach (SVM at plan
level and linear regression at operator level). Li et al. [7] applied linear regression on all the
nodes of a plan followed by runtime scaling. All of these machine learning techniques use either
plan-level modelling or same models but at operator-level. They take for instance, cardinality
inputs and operator types as features and map execution times on those feature vectors. There
have also been deep learning based papers recently ([10] and [12]) that use the neural network
approach for each operator and combine the result using another neural network on top. With
the advent of big data, some recent papers ([2], [5], [11]) have tried to tackle the problem on big
data platforms (like Spark that uses MapReduce algorithm to execute queries in a multi-user
environment). Papers like [9] and [13] have tried reinforcement learning as well to find the
best plan during query execution, thus bypassing the traditional way of estimating costs and

cardinalities.

36

Chapter 10
Conclusion and Future Work

In conclusion, we have tried a different approach of predicting query execution time by min-
imally changing the cost model of PostgreSQL. We studied PostgreSQL’s cost model of each
operator and changed the cost functions of each one of them, as summarised in 10.1. For Sort
and Join (Nested Loop Join and Sort Merge Join) operators, we locally tuned the cost param-
eters. For Sort Operator, we identified that PostgreSQL’s model does not account for actual
movement cost of tuples and does not differentiate between the ordered set of attributes on
which sorting is supposed to happen. So we added cost functions to account for these short-
comings. Finally, for index scan, we learned the physical data layout properties based on a
set of domain-covering index scan queries by fitting a piecewise linear approximation curve on
the execution times of those scans against their cardinalities. We experimentally showed that
our approach works well in predicting the cost of query plans accurately by evaluating on more
than 350 query plans with 5-6 joins on an average in each plan. Our approach is explainable,
easy to debug, generalizable to any query plan and conveniently integrable in the traditional

cost models.

Operator Change in PostgreSQL’s model
Sort, NLJ, SMJ Tuning cost parameters locally
Sort Addition of tuple movement cost and differentiating

between costs of different set of attributes

Index Scan Learning physical data layout properties on a set of
domain-covering index scans

Figure 10.1: Summary of our approach

37

As the future work of the project, we want to predict execution times of the remaining operators
(i.e. hash join, index scan on string-valued attributes and in spilling scenario, index-only scan
and limit). Further, we want to integrate the model in PostgreSQL to check for any improvement
in query optimisation, enhance accuracy of our own model with better approaches (especially
for NLJ with index scan), check for any increase in accuracy of deep-learning based cost models
by using them only for index scan and, finally, extend the execution environment to multi-user

system.

38

Bibliography

1]

[6]

[9]

[10]

M. Akdere and U. Cetintemel. Learning-based Query Performance Modeling and Predic-
tion. In ICDE, 2012. 1, 36

A. Burdakov, V. Proletarskaya, A. Ploutenko, O. Ermakov and U. Grigorev. Predicting
SQL Query Execution Time with a Cost Model for Spark Platform. IOTBDS, 2020. 36

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan and D. Patterson.
Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning.
In ICDE, 2009. 1, 36

C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting Query Execution Times for Au-
tonomous Workload Management. In ICAM, 2008. 1, 36

A Jindal, L. Viswanathan, K. Karanasos. Query and Resource Optimisations: A Case for
Breaking the Wall in Big Data Systems. In arXiv, 2019. 36

V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper and T. Neumann. How Good Are
Query Optimizers Really? PVLDB, 9(3), 2015. 4, 27

J. Li, A. C Konig, V. Narasayya, and S. Chaudhary. Robust Estimation of Resource
Consumption for SQL Queries using Statistical Techniques. PVLDB, 5(11), 2012. 1, 36

L. F. Mackert and G. M. Lohman. Index Scans Using a Finite LRU Buffer: A Validated
I/O Model. TODS, 14(3), 1989. 10

R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, T. Kraska. Bao: Learning to Steer
Query Optimizers. In arXiv, 2020. 1, 36

R. Marcus and O. Papaemmanouil. Plan-Structured Deep Neural Network Models for
Query Performance Prediction. PVLDB, 12(11), 2019. 1, 36

39

BIBLIOGRAPHY

[11] T. Siddiqui, A. Jindal, S. Qiao, H. Patel, W. Le. Cost Models for Big Data Query Pro-
cessing: Learning, Retrofitting, and Our Findings. In arXiv, 2020. 36

[12] J. Sun and G. Li. An End-to-End Learning-based Cost Estimator. PVLDB, 13(3), 2019.
1, 36

[13] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo and J. Antonakakis. SkinnerDB:
Regret-Bounded Query Evaluation via Reinforcement Learning. SIGMOD, 2019. 1, 3, 36

[14] W. Wu. A Note On Operator-Level Query Execution Cost Modeling. In arXiv, 2020. 1,
3, 36

[15] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigimiis and J. F. Naughton. Predicting Query
Execution Time: Are Optimizer Cost Models Really Unusable? In ICDE, 2013. 1, 3, 6,
36

[16] W. Wu, Xi Wu, H. Hacigiimiis and J. F. Naughton. Uncertainty Aware Query Execution
Time Prediction. PVLDB, 7(14), 2014. 1, 36

40

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Characteristics of Our Approach
	1.2 Assumptions
	1.3 Roadmap

	2 PostgreSQL's Cost Model
	2.1 Tuning PostgreSQL's Cost Parameters
	2.2 Examples

	3 Prediction of Scan Operators
	3.1 Sequential Scan
	3.2 Index Scan
	3.2.1 PostgreSQL’s Cost Model of Index Scan
	3.2.1.1 Shortcomings

	3.2.2 Our Cost Model of Index Scan
	3.2.2.1 Training Procedure
	3.2.2.2 Prediction Procedure

	4 Prediction of Sort Operator
	4.1 PostgreSQL's Cost Model for Sort
	4.1.1 Shortcomings

	4.2 Our Cost Model for Sort

	5 Prediction of Join Operators
	5.1 Nested Loop Join
	5.1.1 PostgreSQL's Cost Model for Nested Loop Join
	5.1.2 Our Cost Model for Nested Loop Join

	5.2 Sort Merge Join
	5.2.1 PostgreSQL’s Cost Model for Sort Merge Join
	5.2.2 Our Cost Model for Sort Merge Join

	6 Prediction of Group By Operator with Aggregation
	7 Experiments
	7.1 Evaluation Benchmark
	7.2 Performance Evaluation

	8 Spilling
	9 Related Work
	10 Conclusion and Future Work
	Bibliography

