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Abstract

Phase Change Memory (PCM) is a recently developed non-volatile memory technology that

is expected to provide an attractive combination of the best features of conventional disks

(persistence, capacity) and of DRAM (access speed). For instance, it is about 2 to 4 times

denser than DRAM, while providing a DRAM-comparable read latency. On the other hand,

it consumes much less energy than magnetic hard disks while providing substantively smaller

write latency. Due to this suite of desirable features, PCM technology is expected to play a

prominent role in the next generation of computing systems, either augmenting or replacing

current components in the memory hierarchy. A limitation of PCM, however, is that there is

a significant difference between the read and write behaviors in terms of energy, latency and

bandwidth. A PCM write, for example, consumes 6 times more energy than a read. Further,

PCM has limited write endurance since a memory cell becomes unusable after the number of

writes to the cell exceeds a threshold determined by the underlying glass material.

Database systems, by virtue of dealing with enormous amounts of data, are expected to

be a prime beneficiary of this new technology. Accordingly, recent research has investigated

how database engines may be redesigned to suit DBMS deployments on PCM, covering ar-

eas such as indexing techniques, logging mechanisms and query processing algorithms. Prior

database research has primarily focused on computing architectures wherein either a) PCM

completely replaces the DRAM memory ; or b) PCM and DRAM co-exist side-by-side and

are independently controlled by the software. However, a third option that is gaining favor in

the architecture community is where the PCM is augmented with a small hardware-managed

DRAM buffer. In this model, which we refer to as DRAM HARD, the address space of the



application maps to PCM, and the DRAM buffer can simply be visualized as yet another level

of the existing cache hierarchy. With most of the query processing research being preoccupied

with the first two models, this third model has remained largely ignored. Moreover, even in

this limited literature, the emphasis has been restricted to exploring execution-time strategies;

the compile-time plan selection process itself being left unaltered.

In this thesis, we propose minimalist reworkings of current implementations of database

operators, that are tuned to the DRAM HARD model, to make them PCM-conscious. We

also propose novel algorithms for compile-time query plan selection, thereby taking a holistic

approach to introducing PCM-compliance in present-day database systems. Specifically, our

contributions are two-fold, as outlined below.

First, we address the pragmatic goal of minimally altering current implementations of

database operators to make them PCM-conscious, the objective being to facilitate an easy tran-

sition to the new technology. Specifically, we target the implementations of the “workhorse”

database operators: sort, hash join and group-by. Our customized algorithms and techniques

for each of these operators are designed to significantly reduce the number of writes while si-

multaneously saving on execution times. For instance, in the case of sort operator, we perform

an in-place partitioning of input data into DRAM-sized chunks so that the subsequent sorting

of these chunks can finish inside the DRAM, consequently avoiding both intermediate writes

and their associated latency overheads.

Second, we redesign the query optimizer to suit the new environment of PCM. Each of the

new operator implementations is accompanied by simple but effective write estimators that

make these implementations suitable for incorporation in the optimizer. Current optimizers

typically choose plans using a latency-based costing mechanism assigning equal costs to both

read and write memory operations. The asymmetric read-write nature of PCM implies that

these models are no longer accurate. We therefore revise the cost models to make them cognizant

of this asymmetry by accounting for the additional latency during writes. Moreover, since the

number of writes is critical to the lifespan of a PCM device, a new metric of write cost is

introduced in the optimizer plan selection process, with its value being determined using the
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above estimators.

Consequently, the query optimizer needs to select plans that simultaneously minimize query

writes and response times. We propose two solutions for handling this dual-objective optimiza-

tion problem. The first approach is a heuristic propagation algorithm that extends the widely

used dynamic programming plan propagation procedure to drastically reduce the exponential

search space of candidate plans. The algorithm uses the write costs of sub-plans at each of the

operator nodes to decide which of them can be selectively pruned from further consideration.

The second approach maps this optimization problem to the linear multiple-choice knapsack

problem, and uses its greedy solution to return the final plan for execution. This plan is known

to be optimal within the set of non interesting-order plans in a single join order search space.

Moreover, it may contain a weighted execution of two algorithms for one of the operator nodes in

the plan tree. Therefore overall, while the greedy algorithm comes with optimality guarantees,

the heuristic approach is advantageous in terms of easier implementation.

The experimentation for our proposed techniques is conducted on Multi2sim, a state-of-

the-art cycle-accurate simulator. Since it does not have native support for PCM, we made a

major extension to its existing memory module to model PCM device. Specifically, we added

separate data tracking functionality for the DRAM and PCM resident data, to implement the

commonly used read-before-write technique for PCM writes reduction. Similarly, modifications

were made to Multi2sim’s timing subsystem to account for the asymmetric read-write latencies

of PCM. A new DRAM replacement policy called N-Chance, that has been shown to work well

for PCM-based hardware, was also introduced.

Our new techniques are evaluated on end-to-end TPC-H benchmark queries with regard to

the following metrics: number of writes, response times and wear distribution. The experimen-

tal results indicate that, in comparison to their PCM-oblivious counterparts, the PCM-conscious

operators collectively reduce the number of writes by a factor of 2 to 3, while concurrently im-

proving the query response times by about 20% to 30%. When combined with the appropriate

plan choices, the improvements are even higher. In the case of Query 19, for instance, we ob-

tained a 64% savings in writes, while the response time came down to two-thirds of the original.
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In essence, our algorithms provide both short-term and long-term benefits. These outcomes

augur well for database engines that wish to leverage the impending transition to PCM-based

computing.
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Chapter 1

Introduction

Phase Change Memory (PCM) is a recently developed non-volatile memory technology, con-

structed from chalcogenide glass material, that stores data by switching between amorphous

(binary 0 ) and crystalline (binary 1 ) states. Broadly speaking, it is expected to provide an

attractive combination of the best features of conventional disks (persistence, capacity) and

of DRAM (access speed). For instance, it is about 2 to 4 times denser than DRAM, while

providing a DRAM-comparable read latency. On the other hand, it consumes much less energy

than magnetic hard disks while providing substantively smaller write latency. Due to this suite

of desirable features, PCM technology is expected to play a prominent role in the next genera-

tion of computing systems, either augmenting or replacing current components in the memory

hierarchy [32, 46, 25]. A limitation of PCM, however, is that there is a significant difference

between the read and write behaviors in terms of energy, latency and bandwidth. A PCM

write, for example, consumes 6 times more energy than a read. Further, PCM has limited write

endurance since a memory cell becomes unusable after the number of writes to the cell exceeds

a threshold determined by the underlying glass material.

In the recent years, chip manufacturers have come up with new PCM prototypes and prod-

ucts signalling the advent of PCM-based systems. IBM, for example, has come up with a PCM

prototype that is about 275 times faster than regular solid state disk (SSD) devices [6]. Com-

panies like Micron [5] have made PCM chips available to original equipment manufacturers
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(OEM) to be included in their products. Similarly, Samsung has started shipping a PCM-

inclusive multi-chip package (MCP) that is intended for the mobile handset market [4]. These

developments indicate that the transition of present computing systems to a PCM inclusive

hardware is indeed imminent. Thus, it is imperative for database systems to be geared up for

this transition if they are to utilize PCM to the fullest potential.

Algorithm design for database query execution in a PCM environment represents a depar-

ture from the conventional design principles based on symmetric read and write behaviours.

For instance, the glaring performance gap between reads and writes can now be exploited by

trading writes for reads. Current query execution, being rooted in symmetric I/O assumption,

can be grossly sub-optimal in this new paradigm. Thus, PCM compliant query execution calls

for a significant transformation in the hitherto established perspective on query execution algo-

rithm design. There has been similar research undertaken earlier for database query execution

on flash disks [36]. However, PCM differs from flash in some key aspects. Firstly, flash supports

block addressability whereas PCM is byte addressable. Secondly, the read latency gap between

Flash and DRAM is quite large (32X) whereas the read latencies of PCM and DRAM are almost

comparable. These differences deem Flash suitable techniques sub-optimal for PCM. Conse-

quently, several database researchers have, in recent times, focused their attention on devising

new implementations of the core database operators that are adapted to the idiosyncrasies of

the PCM environment (e.g. [12, 40]).

Our Work

In this thesis, we propose minimalist reworkings of current implementations of database op-

erators that are tuned to the DRAM HARD model (described in detail in Section 1.2). In

particular, we focus on the “workhorse” operators: sort, hash join and group-by. The pro-

posed modifications are not only easy to implement but are attractive from the performance

perspective also, simultaneously reducing both PCM writes and query response times.

The new implementations are evaluated on Multi2sim [37], a state-of-the-art architectural

simulator, after incorporating major extensions to support modelling of the DRAM HARD

2
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configuration. Their performance is evaluated on complete TPC-H benchmark queries. This

is a noteworthy point since earlier studies of PCM databases had only considered operator

performance in isolation. But, it is possible that optimizing a specific operator may turn out to

be detrimental to downstream operators that follow it in the query execution plan. For instance,

the proposal in [12] to keep leaf nodes unsorted in B+ indexes – while this saves on writes, it

is detrimental to the running times of subsequent operators that leverage index ordering – for

instance, join filters. Finally, we include the metric of wear distribution in our evaluation to

ensure that the reduction in writes is not achieved at the cost of skew in wear-out of PCM cells.

Our simulation results indicate that the customized implementations collectively offer sub-

stantive benefits with regard to PCM writes – the number is typically brought down by a factor

of two to three. Concurrently, the query response times are also brought down by about 20–30

percent. As a sample case in point, for TPC-H Query 19, savings of 64% in PCM writes are

achieved with a concomitant 32% reduction in CPU cycles.

Fully leveraging the new implementations requires integration with the query optimizer,

an issue that has been largely overlooked in the prior literature. We take a first step here by

providing simple but effective statistical estimators for the number of writes incurred by the

new operators, and incorporating these estimators in the query optimizer’s cost model. Two

novel query optimization algorithms are proposed, that consider both writes and response times

in their plan selection process. Sample results demonstrating that the resultant plan choices

provide substantively improved performance are provided in our experimental study.

Overall, the above outcomes augur well for the impending migration of database engines to

PCM-based computing platforms.

1.1 Phase Change Memory

PCM is an upcoming non-volatile memory technology that is composed of phase change mate-

rials such as chalcogenide glass. The cells of this material are amenable to quickly and reliably

switching between crystalline and amorphous states which have different degrees of electrical

resistance. This switch is thermally induced by means of electrical pulses and can be invoked

3
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Figure 1.1: Programming the PCM cell [12]

a significantly large number of times. The resulting variations in resistance is used to store

bit information in the cells – amorphous state characterized by high resistance representing

bit 0, while crystalline with low resistance denoting bit 1. In fact, the difference in resistance

between these two states is about 5 orders of magnitude, which can be further exploited by

using intermediate states to denote multiple bits per cell [34]. Figure 1.1 is a schematic diagram

showing the SET and RESET operations on PCM.

Figure 1.2: Typical access cycles for different memories [32]

The read latency of PCM is almost comparable to DRAM. Typically, this number is about

211 cycles for a page access, as can be seen in Figure 1.2. Moreover, it is byte-addressable

and consumes orders of magnitude less idle power than DRAM. On the density scale, it offers

2-4X the density of DRAM, while exhibiting superior scaling capabilities to suit shrinking chip

4
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dimensions [29]. This indicates that PCM is expected to be cheaper compared to DRAM when

produced in large volumes [32]. Thus, PCM promises to bridge the gap between the DRAM and

the Hard Disk in terms of both access latency and capacity. In fact, PCM is currently considered

the most rapidly progressing memory technology under the class of storage class memory [8],

an umbrella term that encompasses other memories characterized by similar properties of being

random-accessible, non-volatile, fast and low cost – such as spin-torque-transfer RAM (STT-

RAM) [22] and Memristor [35].

On the flip side, however, PCM comes with serious write limitations. A PCM write is 4-

20X slower than a PCM read and consumes much larger energy. Furthermore, a PCM cell can

tolerate a limited number of writes – the number typically being around 108 – beyond which

it becomes unusable. Recent research has therefore sought to alleviate the adverse effects of

writes by means of wear-levelling [32] and other custom techniques [43, 14].

Table 1.1 shows the characteristics of PCM as compared to DRAM, NAND Flash and HDD.

Table 1.1: Comparison of memory technologies [32], [25], [3], [12]

DRAM PCM NAND Flash HDD

Read energy 0.8 J/GB 1 J/GB 1.5 J/GB 65 J/GB
Write energy 1.2 J/GB 6 J/GB 17.5 J/GB 65 J/GB
Idle power ∼100 mW/GB ∼1 mW/GB 1-10 mW/GB ∼10 mW/GB
Endurance ∞ 106 − 108 104 − 105 ∞
Page size 64B 64B 4KB 512B
Page read la-
tency

20-50ns ∼ 50ns ∼ 25µs ∼ 5ms

Page write la-
tency

20-50ns ∼ 1µs ∼ 500µs ∼ 5ms

Write band-
width

∼GB/s per die 50-100 MB/s per
die

5-40 MB/s per
die

∼200 MB/s per
drive

1.2 Architectural Model

The prior database work has primarily focused on computing architectures wherein either (a)

PCM completely replaces the DRAM memory [12]; or (b) PCM and DRAM co-exist side-by-

side and are independently controlled by the software [40]. We hereafter refer to these options
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Chapter 1. Introduction

as PCM RAM and DRAM SOFT, respectively.

Figure 1.3: PCM-based Architectural Options [12]

However, a third option that is gaining favor in the architecture community, and also mooted

in [12] from the database perspective, is where the PCM is augmented with a small hardware-

managed DRAM buffer [32]. In this model, which we refer to as DRAM HARD, the address

space of the application maps to PCM, and the DRAM buffer can simply be visualized as yet an-

other level of the existing cache hierarchy. For ease of comparison, these various configurations

are pictorially shown in Figure 1.3.

There are several practical advantages of the DRAM HARD configuration: First, the write

latency drawback of PCM RAM can be largely concealed by the intermediate DRAM buffer [32].

Second, existing applications can be used as is but still manage to take advantage of both the

DRAM and the PCM. This is in stark contrast to the DRAM SOFT model which requires

incorporating additional machinery, either in the program or in the OS, to distinguish between

data mapped to DRAM and to PCM – for example, by having separate address space mappings

for the different memories.
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1.3 Problem Framework

We model the DRAM HARD memory organization shown in Figure 1.3 (c). The DRAM buffer

is of size D, and organized in a K-way set-associative manner, like the L1/L2 processor cache

memories. Moreover, its operation is identical to that of an inclusive cache in the memory

hierarchy, that is, a new DRAM line is fetched from PCM each time there is a DRAM miss.

The last level cache in turn fetches its data from the DRAM buffer.

Table 1.2: Notations Used in Operator Analysis

Term Description

D DRAM size
K DRAM Associativity
B PCM Block Size
TPCM PCM Latency
NR, NS Row cardinalities of input relations R and S, respectively
LR, LS Tuple lengths of input relations R and S, respectively
P Pointer size
F Load-factor of buckets in hash table
H Size of each hash table entry
A Size of aggregate field (for group-by operator)
Nj , Ng Output tuple cardinalities of join and group-by operators, respec-

tively
Lj , Lg Output tuple lengths of join and group-by operators, respectively

We assume that writes to PCM happen at the granularity of a memory-word (whose size

we assume to be 4B) and are incurred only when a data block is evicted from DRAM to PCM.

A data-comparison write (DCW) scheme [43] is used for the writing of PCM memory blocks

during eviction from DRAM – in this scheme, the memory controller compares the existing

PCM block to the newly evicted DRAM block, and selectively writes back only the modified

words. Further, N-Chance [19] is used as the DRAM eviction policy due to its preference for

evicting non-dirty entries, thereby saving on writes. The failure recovery mechanism for updates

is orthogonal to our work and is therefore not discussed in this thesis.

As described above, the simulator implements a realistic DRAM buffer. However, in our

write analyses and estimators, we assume for tractability that there are no conflict misses in the
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DRAM. Thus, for any operation dealing with data whose size is within the DRAM capacity,

our analysis assumes no evictions and consequently no writes. The experimental evaluation

in Section 5.8 indicates the impact of this assumption to be only marginal. Further, our

experimentation is restricted to single query workloads.

With regard to the operators, we use R to denote the input relation for the sort and group-by

unary operators. Whereas, for the binary hash join operator, R is used to denote the smaller

relation, on which the hash table is constructed, while S denotes the probing relation.

In this work, we assume that all input relations are completely PCM-resident. Further, for

presentation simplicity, we assume that the sort, hash join and group-by expressions are on

singleton attributes – the extension to multiple attributes is straightforward.

A summary of the main notation used in the analysis of the following sections is provided

in Table 1.2.

1.4 Organization

The remainder of this thesis is organized as follows: The related literature is reviewed in

Chapter 2. The design of the new PCM-conscious database operators, and an analysis of

their PCM writes, are presented in Chapter 3. The details of our physical implementations of

these operators along with the simulator extensions for PCM are covered in Chapter 4. The

experimental framework and simulation results are reported in Chapter 5. This is followed by a

discussion in Chapter 6 on integration with the query optimizer. Finally, Chapter 7 summarizes

our conclusions and outlines future research avenues.
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Survey of Related Literature

Over the past decade, there has been considerable PCM-related research activity on both the

architectural front and the various application domains, including database systems. A review

of the literature that is closely related to our work is presented here.

2.1 Architectural techniques

On the architectural side, wear levelling algorithms are proposed in [31] that rotate the lines

within a circular buffer each time a certain write threshold is reached. The circular buffer holds

an empty line to facilitate the rotation of lines during each such round. To keep track of the

start of the first block and the location of the gap block, two additional variables are used.

Their techniques avoid a storage table lookup by providing direct mapping function between

logical and physical blocks. A randomized algorithm is also introduced to handle the case when

the writes are spatially concentrated to enable wear levelling across the entire PCM.

PCM buffer management strategies to reduce latency and energy consumption have been

discussed in [25]. Using a narrow size of the PCM row buffer is advocated, coupled with the

usage of multiple such buffers. The narrower buffer size helps in decreasing the PCM write

energy and latency, while multiple buffers are advantageous in terms of write coalescing and

spatial locality.

Techniques to reduce writes by writing back only modified data to PCM upon eviction from
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LLC/DRAM are presented in [43, 25, 46]. These techniques recommend preceding each write

operation with a read operation for the same location, in order to compare the existing data

word with the modified one. Since the read operation is much faster than a write, the additional

overhead of read is subsumed in the write savings obtained by avoiding redundant writes.

A hybrid memory design which calls for PCM augmentation with a small DRAM buffer

is proposed by [32]. The recommended size of the DRAM buffer is about 3% of the PCM

memory size. The buffer is meant to act as a page cache to the PCM memory by buffering

frequently accessed PCM pages, thus hiding the large latency of PCM. Also, since pages that

are modified repeatedly and in quick succession are expected to be resident in the DRAM, it

helps in saving PCM writes. To save writes even further, they recommend writing back only

the modified (‘dirty’) cache lines to the main memory. Further, swapping at the block-level is

used to achieve wear levelling.

The observation that a PCM write for a SET operation is slow whereas that for the RESET

operation consumes almost a read-comparable latency, is leveraged in [31] to alleviate the

problem of slow writes. Whenever a cache line gets dirty, the corresponding entire PCM line

is proactively issued a SET command, thereby allowing it a large time-window to finish. In

this manner, when the dirty cache-line gets evicted, the only operations left are the RESET

operations which consume much less time.

A novel write-sensitive cache-line replacement policy called N-chance is proposed in [19].

The policy uses N as a parameter that can be configured by the hardware designers. At the

time of cache-line replacement, this policy examines, starting from the first LRU line, the N

least recently used lines. The first clean (non-modified) cache-line is chosen as the replacement

candidate. If no clean line is found among the N candidates, the LRU entry itself is chosen for

replacement. Clearly, when N = 1, the policy behaves just like the LRU replacement policy.

Thus, this technique gives priority to non-dirty entries to dirty ones for eviction, thus helping

in saving PCM writes. Experimental evaluation of this techniques found N = K/2 (K is the

cache associativity) giving the best results among all values of N.

A scheme called Flip-N-Write is proposed by Cho et al. in [14]. The fundamental observation
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behind this scheme is that, given two words A and B, the minimum value among the two

Hamming distances – of A to B and that of A to B – is bounded by B/2, where B is the

number of bits in a word. Their scheme employs a special bit called the “flip-bit” for this

purpose that accompanies each memory word, and that indicates whether the currently stored

memory word is the actual word or its complement. At the time of updating the modified word

to PCM memory, instead of immediately writing the new word to the given memory location, it

first checks the Hamming distance of the modified word with the original word. If the distance

is greater than B/2, it stores the complement of the modified word and sets the flip-bit to ON.

Otherwise, the modified word is stored as it is, and the flip-bit is set to OFF. As a result, this

technique restricts the maximum bit writes per word to B/2.

Another technique to reduce writes to PCM main memory is proposed in [20]. Their tech-

nique relies on data migration among the scratch-pad memories belonging to the various cores

of an embedded chip multiprocessor. This migration comprises of shared data values, thus help-

ing in the reduction of writes by preventing PCM write-backs. Program analysis techniques

are used to determine the time of data migration and the corresponding target scratch-pad

memory for data placement. The problem of data migration is modelled as a shortest path

problem and an approach is outlined to find the optimal data migration path with minimal

cost for both dirty and clean data blocks. Additionally, they also propose a technique of data

re-computation which discards data that would have otherwise been written to PCM, instead

choosing to re-compute the data value when the need for it arises.

Use of PCM in the context of three-dimensional (3D) die stacking is studied in [44]. The

high power density of 3D stacking and its consequent heat generation, while being harmful for

DRAM, can be used fruitfully for programming PCM cells. The work details a hybrid PCM-

DRAM memory architecture that simultaneously exploits the high speed, infinite lifespan and

power-efficient write access of DRAM along with the low idle-power read access of PCM. The

technique uses an OS-level paging scheme that considers memory reference characteristics of the

programs. It maintains multiple LRU queues to classify “hot-modified” and “cold-modified”

pages, which are updated using counters that track the frequency of page updates. The hot-
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modified pages are moved to DRAM to reduce the write traffic to PCM, thus leading to energy

savings and increase in PCM lifetime.

A different variation of hybrid PCM-DRAM page placement policy is proposed in [33]. The

basic underlying observation is that a relatively small subset of pages used by an application

are typically performance critical and can be accommodated in DRAM. Further, this subset

of pages may change during the duration of program run, requiring active tracking by the

system. The policy uses PCM and DRAM to hold mutually exclusive sets of pages. Page

placement is determined by the hardware through monitoring of the access patterns of the

applications currently executing on the system. Preference is given to place performance-

critical and frequently written pages in DRAM, while the rest of the pages are accommodated

in PCM.

A unique memory hierarchy organization consisting of NVM for both last-level cache and

main memory is advocated in [45]. Their approach avoids logging and copy-on-write overheads

for updates, by using a multi-version memory hierarchy to allow direct in-place modification of

main memory data structures. In case of an update to the last-level NV cache, the corresponding

cache-line holds the updated data, while the old version of the data is maintained in the NV

main memory. Once this cache line gets evicted, the main memory is automatically updated

with the new data. The performance due to such a hierarchy is shown to closely resemble that

of the system without such persistence support. The authors also develop a software interface

along with a set of hardware extensions to render atomicity and consistency support to this

kind of a hierarchy.

2.2 Programming models and APIs

Another body of work targets persistence in PCM and other non-volatile memories, while

making them accessible directly through CPU loads and stores, by putting them on the memory

bus. A system called BPFS [16] provides an interface similar to a file system for managing PCM.

A technique of short-circuit shadow paging is proposed which can perform in-place update of

data in some cases, while requiring to copy just a subset of the data used by the common shadow
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paging technique to achieve consistency. The technique relies on two key hardware primitives

to be available - atomicity of 8-byte writes and epoch barriers. Epoch barriers ensure that a set

of writes is flushed to persistent memory before flushing the next set of writes, thereby bringing

some degree of ordering in the writes, which are otherwise entirely dependent on when the data

is flushed from cache.

A lightweight heap-based abstraction to persistent memories is provided by NV-Heaps [15]

that supports ACID based transactions. These heaps are internally stored as files in the PCM

memory and are portable across machines, while the DRAM is used to hold volatile data. A

critical drawback of these hybrid systems is that they are particularly prone to issues such as

dangling pointers. This may arise when, for instance, a pointer in PCM points to a memory

location in DRAM which becomes invalid on a system restart. The framework thus implements

features like garbage collection to avoid memory leaks as well as puts in place safety measures

to combat inconsistency issues. The underlying processor support requirements for NV-Heaps

are similar to those for BPFS.

Another work contemporary to NV-Heaps is Mnemosyne [41] that provides a programming

interface to SCMs. The interface provides applications with the ability to declare variables

as static so that they persist their values across system restarts. Additionally, it provides the

facility of allocating persistent regions and heaps which automatically map to NVM. However,

in contrast to NV-Heaps and BPFS, it provides persistence primitives that use instructions that

are already available in most processors, namely non-temporal stores, fences and cache flushes.

These primitives are then used to provide ACID transactions over these regions. This comes in

the form of a lightweight transaction mechanism which provides APIs for direct modification

of persistent variables and supports consistent updates to NVM.

Persistence support for arbitrary data structures is provided in REWIND [9] which is avail-

able in the form of a user-mode library. This library can be utilized to perform transactional

updates which can be invoked directly from user code. To guarantee recoverability, it uses

write-ahead logging – implemented by means of a doubly linked list – that supports recoverable

operations on itself. A combination of techniques including lightweight logging, batching log
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data, persistent memory fences and non-temporal updates are employed to achieve good per-

formance. Furthermore, it also outlines a two-level logging mechanism that uses an additional

atomic AVL-tree structure built on top of the linked list, to aid in faster recovery.

A fast failure recovery mechanism for main memories comprised entirely of NVM type

storage is discussed in [27]. The main idea is to defer flushing of transient data residing in

processor cache and registers to NVM till the time of system failure. This “flush on fail”

approach relies on residual energy window – a small period of time during which the DC supply

to the system is maintained post a failure event is signalled – that is provided by the system

power supply. Due to this saving of the temporal state of the system, it can quickly resume

the state just before failure without having to rebuild it from scratch by referring to the logs.

Thus, it makes system failure to appear as a suspend followed by a resume event. Delaying

flushing of committed data to NVM renders an additional advantage of saving the high write

latencies of such memories for intermediate updates, while also hiding those writes to increase

NVM lifetime.

The problem of making the most cost-effective use of NVMs is addressed in [23]. Due to the

high-costs of presently available NVM devices, instead of replacing the entire main memory with

NVM, it advocates using NVM only for the logging subsystem to extract maximum returns on

investment. For fast logging, it provides logging data structures that are updated directly via

hardware-supported memory references, which avoids the overheads associated with a software

based interface. The conventional central log buffering functionality suited for block-based

devices is jettisoned in favor of per-transaction logging, leading to highly concurrent logging

performance. Further, to mitigate the high latency incurred in direct writes to NVMs, two log

persistence policies – flush-on-insert and flush-on-commit – are offered. These policies allot the

log entry initially in volatile memory and later flush it to NVM, either immediately when the

volatile entry is fully written, or asynchronously before the actual data is committed.
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2.3 Application-level optimizations

Turning our attention to the database front, for the PCM RAM memory model, write reduction

techniques for index construction and for hash join are proposed in [12]. They recommend

keeping the keys unsorted at the leaf nodes of the index. While this scheme saves on writes,

the query response times are adversely impacted due to the increased search times. Similarly,

for partitioning during hash join, a pointer based approach is proposed to avoid full tuple

writes. Since we assume database to be PCM-resident, this partitioning step is obviated in our

algorithms.

Some recent research work builds on top of the B+ tree structure presented in [12]. For

instance, avoiding sorting overhead during split of unsorted leaf nodes is proposed in [13].

They suggest a B+ tree variant called the sub-balanced unsorted node scheme. This tree allows

unbalanced splits using a random element as pivot, which avoids write and latency overheads

incurred by an explicit sort step to find the median element. Additionally, they recommend

delaying update of the pointers from the parent node during splits by using overflow chaining

at the node being split. Such a scheme is shown to help in avoiding writes due to intermediate

updates.

Another such work [11] targets alleviating the search overheads in unsorted B+ tree index

nodes. A small indirection array called the “slot-array” is advocated as a part of each node that

indicates the sorted order of the index entries. This makes the simple binary search possible

within the entries of the nodes, speeding up the key search process. A variety of combinations

for node structure such as bitmap only, bitmap + slot-array as well as slot-array only nodes

are evaluated for their advantages and drawbacks. Further, the paper also discusses how to

perform consistent updates to the B+ tree index without the overheads of shadow copying or

undo-redo logging. This is achieved by means of atomic writes and the less expensive redo-only

logging.

Allowing controlled imbalance in the B+ tree to leverage the asymmetric I/O properties of

NVM is is proposed in [39]. Such a tree, named unbalanced B+ trees or uB+ trees, defers tree
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balancing to a later period in time, until the overhead due to the imbalance crosses a certain

threshold, the threshold being determined by the relative read and write latencies. Once the

read penalty starts outweighing write savings, the tree goes through another round of balancing.

In this manner, the uB+ tree trades writes for extra reads to achieve performance and PCM

lifetime benefits.

A B+ tree that pre-allocates node space by predicting future key insert positions is proposed

in [21]. It uses a novel prediction mechanism that takes current key distribution into account

to come up with accurate estimates of future insertions; thereby helping in alleviation of write

cost due to node splits.

For the DRAM SOFT memory model, two classes of sort and join algorithms are presented

in [40]. The first class divides the input into “write-incurring” and “write-limited” segments.

The write-incurring part is completed in a single pass whereas the write-limited part is executed

in multiple iterations. In the second class of algorithms, the materialization of intermediate

results is deferred until the read cost (in terms of time) exceeds the write cost. Our work

fundamentally differs from these approaches since in our DRAM HARD model, there is no

explicit control over DRAM. This means that we cannot selectively decide what to keep in

DRAM at any point of time. It also implies that we may ultimately end up obtaining much

less DRAM space than originally anticipated, due to other programs running in parallel on

the system. As shown in Chapter 5, our algorithms have been designed such that even with

restricted memory availability, they perform better than conventional algorithms in terms of

writes.

At a more specific level, the sorting algorithms proposed in [40] employ a heap that may be

constantly updated during each pass. If the available DRAM happens to be less than the heap

size, it is likely that the updated entries will be repeatedly evicted, causing a large number of

writes. Secondly, the join algorithms proposed in [40] involve partitioning the data for the hash

table to fit in DRAM. However, since the results are written out simultaneously with the join

process, and the result size can be as large as the product of the join relation cardinalities, it

is likely that the hash table will be evicted even after partitioning.
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Sorting algorithms for DRAM SOFT model are also discussed in [38]. They split the input

range into buckets such that each bucket can be sorted using DRAM. The bucket boundaries

are determined using hybrid histograms having both depth-bound and width-bound buckets,

the bound being decided depending upon which limit is hit later. The elements are then shuffled

to group elements of the same bucket together, followed by sorting of each bucket within the

DRAM. The sorting methodology used is quicksort or count-sort based on whether the bucket is

depth-bound or width-bound respectively. A major drawback with this approach is that there is

a high likelihood of an error in the approximation of the histogram, leading to DRAM overflow

in some of the buckets. This would lead to additional writes since the overflowing buckets need

to be split into adequately small fragments. Besides, the construction of the histogram itself

may incur a number of writes.

2.4 Optimizations for flash memory

Finally, there has also been quite some research on speeding up query execution in flash-

resident databases. For instance, incorporation of the flash read-write asymmetry within the

query optimizer is discussed in [7]. The operators covered by them include scan, sort, hash

join, apart from addressing materialization and re-scanning operations. The consequent cost

model for these operators includes four parameters – sequential and random page accesses as

well as number of read and write operations. Their focus however is restricted to modifying

the operator’s latency cost modelling to suit the flash environment, while no changes are made

to the optimization process itself to consider the number of writes as a separate metric.

The effect of flash memory on the performance of indexes and joins is analysed in [26].

Aspects of index considered in the study include cost of key insertion and lookup, besides

evaluation of the overall speed-up of using an index traversal over a sequential scan during

query processing. For joins, four common external join algorithms are investigated – standard

nested loops, index nested loops, index-based sort-merge and hash join. Their experiments

indicate that flash offers significant advantages only at low predicate selectivities due to its

superior random read performance over disks.
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On similar lines to previous work, fundamental observations for disk based query processing

are examined for their validity in the flash environment in [18]. The authors perform their study

in the context of ad-hoc joins, i.e joins that do not use any index. Four such join algorithms,

namely nested-loops, sort-merge, grace and hybrid hash join, are implemented on both flash

and HDD and their performance is compared. The authors conclude that blocked I/O offers the

same performance advantages for flash as it does for disks, whereas CPU performance begins

to play as major a role for the choice of join algorithm as do its I/O requirements.

The use of a column-based layout has been advocated in [36] to avoid fetching of unnecessary

attributes during scans. The paper presents a new join algorithm, called FlashJoin, that aims to

reduce the I/O cost of join evaluation by minimizing the number of passes over the participating

tables. The column-based layout is also leveraged for this join by restricting the columns fetched

to only those that are participating in the join. Full tuple materialization is deferred to as late

as possible in the plan tree. The authors recommend external merge sort for data that cannot

fit in the DRAM.

Likewise, previous research on flash memory spans many other areas including caching

optimizations, indexing techniques, transactional logging as well as wear-levelling. There have

been a very few techniques that are geared towards write reduction at the operator execution

level – they are also applicable to a PCM setting and are complementary to our work. For

instance, the work in [7] can be applied to PCM for revising the latency cost model, though

it has to be adapted to the idiosyncrasies of the PCM environment. Similarly, the techniques

of a column-based layout and late materialization of join tuples discussed in [36] would also be

advantageous for PCM to bring about reduction in writes. However, all of them differ from the

work in this thesis in three key aspects.

First, none of the previous database research on flash-based systems has considered an

equivalent of a DRAM HARD memory organization with flash, i.e. where flash plays the role

of main memory, augmented with a small DRAM buffer as an additional level of cache. Hence,

the algorithms have been designed keeping explicit control over DRAM in mind. Second, flash

supports writes only at the granularity of a page (4 KB). Further, data can only be written
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to a page that is in an erased state, and hence immediate in-place update to a page is not

possible. The erase granularity of flash is much larger – typically 256 KB block at a time.

In the DRAM HARD model of flash organization, this implies that even a single-byte update,

when evicted from DRAM to flash, would amplify to a page size write! Therefore, write-efficient

algorithms for flash suited to DRAM HARD model have to be strictly designed keeping locality

of reference for writes in mind, and hence do not come with the flexibility of design choices

available with PCM; something which we have leveraged in our operator implementations for

PCM. This also explains why there has been a very limited work on query execution algorithms

for flash memory. Thirdly, we have also looked at integrating the writes metric in the query

optimizer. To the best of our knowledge, none of the previous database work on flash has

considered this aspect of query processing.
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Operator Execution Algorithms

In this chapter, we present PCM-conscious algorithms for sort, hash join and group-by op-

erators. These form the “workhorse” operators in most modern-day database systems. The

algorithms use existing techniques to reduce writes while concurrently reducing response times

for queries. In all these algorithms, the common underlying theme is trading writes for extra

reads, besides localising writes so that they complete inside the DRAM without intermediate

evictions.

Each algorithm is accompanied by the estimated number of writes that it is expected to

incur at a 4B-word granularity. Note that, similar to the currently prevalent latency cost

models, these estimators are incapable of predicting the exact number of writes. This is because

the actual writes are highly dependent on a variety of factors that cannot be predicted using

available database statistics – such as the order of input tuples in case of operators such as sort,

or the runtime behavior of the DRAM. Also, while perfectly accurate estimators are certainly

desirable, it is not a prerequisite for incorporation into query optimizers. The reason being that

the estimators are meant to indicative of the relative costs of the various algorithms, and are

therefore useful as long as their inaccuracy is within an acceptable degree – something which we

examine in Chapter 5. These estimators are utilized later for integration with the redesigned

optimizer in Chapter 6.

In the next section, we begin with detailing the sort operator. This is followed by the hash
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join operator in Section 3.2 and eventually by the group-by operator in Section 3.3.

3.1 The Sort Operator

Sorting is among the most commonly used operations in database systems, forming the core of

operators such as merge join, order-by and some flavors of group-by. The process of sorting is

quite write-intensive since the commonly used in-memory sorting algorithms, such as quicksort,

involve considerable data movement. In the single pivot quicksort algorithm with n elements,

the average number of swaps is of the order of 0.3nln(n) [42]. There are other algorithms such as

selection sort which involve much less data movement, but they incur quadratic time complexity

in the number of elements to be sorted, and are therefore unsuitable for large datasets.

The main advantage associated with the quicksort algorithm is that it has good average-case

time complexity and that it sorts the input data in-place. If the initial array is much larger

than the DRAM size, it would entail evictions from the DRAM during the swapping process of

partitioning. These evictions might lead to PCM writes if the evicted DRAM lines are dirty,

which is likely since elements are being swapped. If the resulting partition sizes continue to be

larger than DRAM, partitioning them in turn will again cause DRAM evictions and consequent

writes. Clearly, this trend of writes will continue in the recursion tree until the partition sizes

become small enough to fit within DRAM. Thereafter, there would be no further evictions

during swapping and the remaining sorting process would finish inside the DRAM itself.

sorting algorithm to converge fast to partition sizes below DRAM size with fewer number

of swaps. For uniformly-distributed data, these requirements are satisfied by flashsort [28]. On

the other hand, for data with skewed distribution, we propose a variant of flashsort called multi-

pivot flashsort. This algorithm adopts the pivot selection feature of the quicksort algorithm

into flashsort in order to tackle the skewness in data.

Both these algorithms are discussed in detail in the following sections.
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3.1.1 Data with uniform distribution

The flashsort algorithm can potentially form DRAM-sized partitions in a single partitioning step

with at most NR swaps. The sorting is done in-place with a time complexity of O(NRlog2NR)

with constant extra space. The flashsort algorithm proceeds in three phases: Classification,

Permutation and Short-range Ordering. A brief description of each of these phases is as follows:

3.1.1.1 Classification phase

The classification phase divides the input data into equi-range partitions comprising of contigu-

ous and disjoint ranges. That is, if p partitions are required (where p is an input parameter),

the difference between the minimum and the maximum input values is divided by p. Subse-

quently, each tuple is mapped to a partition depending on in which range the value of the

sorting attribute of the tuple lies. Specifically, a tuple with attribute value v is assigned to

Partition(v), computed as

Partition(v) = 1 + b(p− 1)(v − vmin)

vmax − vmin

c

where vmin and vmax are the smallest and largest attribute values in the array, respectively.

The number of tuples in each such partition is counted to derive the boundary information. We

choose the number of partitions p to be dc× NRLR

D
e, where c ≥ 1 is a multiplier to cater to the

space requirements of additional data structures constructed during sorting. In our experience,

setting c = 2 works well in practice.

3.1.1.2 Permutation phase

The Permutation phase moves the elements to their respective partitions by leveraging the

information obtained in the Classification phase. The elements are swapped in a cyclic manner

to place each element inside its partition boundary with a single write step per element.
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3.1.1.3 Short-range Ordering phase

The resulting partitions, each having size less than D, are finally sorted in the Short-range

Ordering phase using quicksort. Note that, by virtue of their size, these partitions are not

expected to incur any evictions during the process of sorting.

3.1.2 Data with non-uniform distribution

In the case when the data is non-uniformly distributed, the equi-range partitioning used by

flashsort fails to produce equi-sized partitions. This is because the number of tuples in each

range is now dependent on the skew of the data. We therefore propose an alternative algorithm,

called multi-pivot flashsort, which uses multiple pivots instead to partition the input tuples.

These pivots are randomly-chosen from the input itself, in the same manner as conventional

quicksort selects a single pivot to create two partitions. The chosen pivots are subsequently

leveraged to partition the input during sorting.

The modified phases of this alternative implementation of the flashsort algorithm, along

with their pseudo-codes, are described next.

3.1.2.1 Classification phase

In the Classification phase, we divide the input relation into p partitions, where p = dNRLR

D
e,

using p − 1 random tuples as pivots. Since the pivots are picked at random, the hope is that

each partition is approximately of size D. These pivots are then copied to a separate location

and sorted. Subsequently, we scan through the array of tuples in the relation, counting the

number of elements between each consecutive pair of pivots. This is accomplished by carrying

out, for each tuple in the array, a binary search within the sorted list of pivots.

In spite of the random choice of pivot values, it is quite possible that some partitions

may turn out to be larger than the DRAM. We account for this possibility by conservatively

creating a larger number of initial partitions. Specifically, the number of partitions is p =

dc× NRLR

D
e, where c ≥ 1 is a design parameter similar to the one used in the flashsort algorithm.

Subsequently, we consider each pair of adjoining partitions and coalesce them if their total size
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is within the DRAM size, after leaving some space for bookkeeping information.

While the above heuristic approach is quite effective, it still does not guarantee that all

the resultant partitions will be less than DRAM size. The (hopefully few) cases of larger-sized

partitions are subsequently handled during the Short-range Ordering phase.

The pseudo-code for the Classification phase is outlined in Algorithm 1.

Algorithm 1 Classification Phase

array[] is the array of input tuples
c is a design parameter ≥ 1

1: p = dc× NRLR

D
e

2: randIndex[] = generate p− 1 random indexes
3: pivot[] = array[randIndex];
4: sort(pivot[])
5: size[] = 0...0 . size of sub-arrays
6: partitionStart[] = 0...0 . starting offset of each partition
7: for i=1 to NR do
8: partition = getPartition(array[i])
9: size[partition]++

10: end for . Time complexity=NR × log2p
11: cumulative = 0
12: for i=1 to p do
13: cumulative = cumulative + size[i]
14: partitionStart[i+1] = cumulative
15: end for . Time complexity=p
16: return partitionStart[]

3.1.2.2 Permutation phase

The Permutation phase uses the information gathered in the Classification phase to group tuples

of the same partition together. A slight difference from flashsort here is that the attribute value

now needs to be compared against the sorted list of pivots to determine the partition of the

tuple. The pseudo-code for the Permutation phase is shown in Algorithm 2. The maximum

number of writes is bounded by NRLR, corresponding to the worst case where every tuple has

to be moved to its correct partition.
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Algorithm 2 Permutation Phase

partitionStart[] is obtained from Classification Phase
nextUnresolvedIndex[] indicates the next position to be examined for each partition

1: nextUnresolvedIndex[] = partitionStart[]
2: for i=1 to NR do
3: curPartitionCorrect = getPartition(array[i])
4: if i between partitionStart[curPartitionCorrect] and partition-

Start[curPartitionCorrect+1] then
5: nextUnresolvedIndex[curPartitionCorrect] = i+1
6: continue
7: else
8: firstCandidateLoc = i
9: presentCandidate = array[i]

10: flag = 1
11: while flag do
12: targetPartitionStart = nextUnresolvedIndex[curPartitionCorrect]
13: targetPartitionEnd = partitionStart[curPartitionCorrect + 1]
14: for k=targetPartitionStart to targetPartitionEnd do
15: nextPartitionCorrect = getPartition(array[i])
16: if k between partitionStart[nextPartitionCorrect] and
17: partitionStart[nextPartitionCorrect + 1] then
18: continue
19: else if k == firstCandidateLoc then
20: flag = 0 . Indicates it is a cycle
21: end if
22: swap(presentCandidate, array[k])
23: nextUnresolvedIndex[curPartitionCorrect] = k+1
24: curPartitionCorrect = nextPartitionCorrect
25: break
26: end for
27: end while
28: end if
29: end for . Time complexity=NR × log2p

3.1.2.3 Short-range Ordering phase

Finally, each of the partitions are sorted separately using conventional quicksort to get the final

PCM sorted array. For partitions that turn out to be within the DRAM size, the Short-range

Ordering phase is completed using conventional quicksort. On the other hand, if some larger-

25



Chapter 3. Operator Execution Algorithms

sized partitions still remain, we recursively apply the multi-pivot flashsort algorithm to sort

them until all the resulting partitions can fit inside DRAM and can be internally sorted.

Algorithm 3 Short-range Ordering Phase

1: for i=1 to p do
2: if size[p] < D then
3: quicksort (partition p)
4: else
5: multi-pivot flashsort (partition p)
6: end if
7: end for

Figure 3.1 visually displays the steps involved in the multi-pivot flashsort of an array of

nine values. First, in the Classification phase, 30 and 10 are randomly chosen as the pivots.

These pivots divide the input elements into 3 different ranges: (< 10), (≥ 10, < 30), (≥ 30).

The count of elements in each of these ranges is then determined by making a pass over the

entire array – in the example shown, three elements are present in each partition. Then, in

the Permutation phase, the elements are moved to within the boundaries of their respective

partitions. Finally, in the Short-range Ordering phase, each partition is separately sorted within

the DRAM.

12 3 33 30 11 10 7 32 8

(a) Classification Phase

7 3 8 12 11 10 30 32 33

(b) Permutation Phase

3 7 8 10 11 12 30 32 33

(c) Short-range Ordering Phase

Figure 3.1: Multi-Pivot Flashsort

3.1.3 PCM write analyses

In the quicksort algorithm, given an array with randomly permuted NR tuples, for simplicity of

analysis let us assume the chosen pivot in each phase of recursion is the median of the partition

tuples. Since the tuples are arranged randomly, the probability that the tuple is in the right

partition is 1/2. In other words, NR/2 tuples are expected to be incorrectly placed.
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. . . . . . . .

NR/8 NR/8 NR/8 NR/8

NR/4 NR/4

NR/2

Figure 3.2: Recursion tree for quicksort swaps

In the next level of the recursion tree, there will be about NR/4 incorrectly placed tuples

for both the partitions, again totalling to NR/2. This total of NR/2 tuples would continue at

each level of the recursion tree. This recursion tree is shown in Figure 3.2.

If Hoare partitioning [17] is used for partitioning, wherein each misplaced element is swapped

with another misplaced element in the opposite partition, moving the elements to their right

partitions will incur NR/2×LR bytes of writes at each level. This trend of writes will continue

until the size of the partition reaches to less than D, i.e when the level l = dlog2(NRLR

D
)e. Post

this, there would be a total writes of NRLR bytes incurred when all the individual partitions

finish sorting within DRAM and are written out. Hence, we get the total word-writes as:

Wsort conv =

l∑
i=1

(NR/2× LR) +NRLR

4

=
0.5NRLRdlog2(NRLR

D
)e+NRLR

4

=
NRLR(0.5dlog2(NRLR

D
)e+ 1)

4

(3.1)

In the flashsort algorithm, though the partition boundary counters are continuously updated

during the Classification phase, they are expected to incur very few PCM writes. This is because

the updates are all in quick succession, making it unlikely for the counters to be evicted from

DRAM during the update process. Next, while in the Permutation phase, there are no more

than NRLR bytes of writes since each tuple is written at most once while placing it inside its

partition boundaries. Since each partition is within the DRAM size, its Short-range Ordering
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phase will finish in the DRAM itself, and then there will be another writes of NRLR bytes upon

eventual eviction of sorted partitions to PCM.

Thus, the number of word-writes incurred by this algorithm is estimated by

Wsort uniform =
2NRLR

4
=
NRLR

2
(3.2)

The write analysis of multi-pivot flashsort follows that of the flashsort algorithm. A neg-

ligible number of writes would be incurred during the copying and sorting of the pivots. As

mentioned, the writes during Permutation phase would be below NRLR bytes. The creation of

additional partitions by choosing extra pivots, and their subsequent coalescing, increases the

likelihood that each partition is below DRAM size – akin to that in flashsort. Therefore the

total word-writes is again estimated to be

Wsort non uniform =
NRLR

2
(3.3)

3.1.4 Response time analyses

To arrive at an estimate of response time, we can divide the total time into read, computation

and write times.

During reads in conventional quicksort algorithm, there will be NRLR

B
×TPCM cycles incurred

for each level of the recursion tree until we reach level l calculated earlier. Post that, there will

be no further rounds of misses as the data for subsequent partitions would fit inside DRAM.

Based on the time complexity of quicksort algorithm, the computation time can be estimated

as NRlog2NR. Accounting for the additional time consumed during writes will add another

4 ×Wsort conv × TPCM cycles (since each word-write corresponds to 4 bytes). Thus the total
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cycles incurred can be calculated as

Tsort conv =
l∑

i=1

(
NRLR

B
× TPCM) +NRlog2NR +

4Wsort conv

B
× TPCM

=
(NRLR(1.5dlog2(NRLR

D
)e+ 1)

B
× TPCM +NRlog2NR

(3.4)

In the flashsort algorithm, during the Classification phase, as the data is read serially with

the counters being updated, there will be NRLR

B
×TPCM cycles incurred. The Permutation phase

will require another NRLR

B
× TPCM cycles as each individual partition is read serially. Finally,

NRLR

B
× TPCM cycles will be also be needed for the Short-range Ordering phase, as the data

required for sorting each individual partition can fit in DRAM and hence needs to be read just

once.

For computation, both Classification and Permutation phases will consume NR cycles each.

If there are p = NRLR

D
partitions, each partition in Short-range Ordering phase will incur

NR

p
log2

NR

p
cycles, adding an overall overhead of NRlog2

NR

p
cycles. Finally,

4Wsort uniform

B
× TPCM

cycles will be required for writing the blocks to PCM. Hence, the total time for flashsort would

be

Tsort uniform =
3NRLR

B
× TPCM + 2NR +NRlog2

NR

p
+

4Wsort uniform

B
× TPCM

=
5NRLR

B
× TPCM + 2NR +NRlog2

D

LR

(3.5)

Calculation of response time for multi-pivot flashsort algorithm follows the same pattern

as that of the flashsort algorithm. The only difference is in the computation time for Classifi-

cation and Permutation phases, where NR cycles is replaced by NRlog2p cycles, owing to the

comparisons involved with pivots for finding the associated partitions. Thus the overall cycles
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are given by:

Tsort non uniform =
3NRLR

B
× TPCM + 2NRlog2p+NRlog2

NR

p
+

4Wsort non uniform

B
× TPCM

=
5NRLR

B
× TPCM + 2NRlog2NR +NRlog2

LR

D

(3.6)

3.2 The Hash Join Operator

Hash join is perhaps the most commonly used join algorithm in database systems. Here, a

hash table is built on the smaller relation, and tuples from the larger relation are used to

probe for matching values in the join column. Since we assume that all tables are completely

PCM-resident, the join here does not require any initial partitioning stage. Instead, we directly

proceed to the join phase. Thus, during the progress of hash join, writes will be incurred during

the building of the hash table, and also during the writing of the join results.

Each entry in the hash table consists of a pointer to the corresponding build tuple, and is

accompanied by a 4-byte hash value for the join column. Due to the absence of prior knowledge

about the distribution of join column values for the build relation, the hash table is expanded

dynamically according to the input. Typically, for each insertion in a bucket, a new space is

allocated, and connected to existing entries using a pointer. Thus, such an approach incurs an

additional pointer write of P bytes each time a new entry of H bytes is inserted.

Our first modification is to use a well-known technique of allocating space to hash buckets

in units of pages [24]. A page is of fixed size and contains a sequence of contiguous fixed-size

hash-entries. When a page overflows, a new page is allocated and linked to the overflowing

page via a pointer. Thus, unlike the conventional hash table wherein each pair of entries is

connected using pointers, the interconnecting pointer here is only at page granularity. Note

that although open-addressing is another alternative for avoiding pointers, probing for a join

attribute value would have to search through the entire table each time, since the inner table
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may contain multiple tuples with the same join attribute value.

A control bitmap is used to indicate whether each entry in a page is vacant or occupied,

information that is required during both insertion and search in the hash table. Each time a

bucket runs out of space, a new page is allocated to the bucket. Though such an approach may

lead to space wastage when some of the pages are not fully occupied, we save on the numerous

pointer writes that are otherwise incurred when space is allocated on a per-entry basis.

Secondly, we can reduce the writes incurred due to storing of the hash values in the hash

table by restricting the length of each hash value to just a single byte. In this manner, we

trade-off precision for fewer writes. If the hash function distributes the values in each bucket

in a perfectly uniform manner, it would be able to distinguish between 28 = 256 join column

values in a bucket. This would be sufficient if the number of distinct values mapping to each

bucket turn out to be less than this value. In order to facilitate this, we can choose B′ ≥ NR

256
;

where B′ denotes the number of buckets in the hash table. Otherwise, we would have to incur

the penalty (in terms of latency) of reading the actual join column values from PCM due to

the possibility of false positives.

Figure 3.3: Paged Hash Table

Figure 3.3 displays the hash table organization with the proposed optimizations.
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3.2.1 PCM write analyses

We ignore the writes incurred while initializing each hash table bucket since they are negligible

in comparison to inserting the actual entries. The total writes for conventional hash join is

given by

Whj conv =
NR × (H + P + 4) +Nj × Lj

4
(3.7)

If the size of the page is given by Spage, there will be Epage = Spage

H
entries per page. There

would now be a 1-byte hash value per entry, along with one pointer for each Epage set of entries.

Additionally, for each insertion, a bit write would be incurred due to the bitmap update. The

join tuples would also incur writes to the tune of Nj×Lj. Thus, the total number of word-writes

for hash join would be

Whj =
NR × (H + 1 + P

Epage
+ 1

8
) +Nj × Lj

4

Since in practice both P
Epage

and 1
8

are small as compared to (H + 1),

Whj ≈
NR × (H + 1) +Nj × Lj

4
(3.8)

3.2.2 Response time analyses

As the bulk of the time in hash join is spent in I/O, we divide the response time for hash join

into just read and write times. During the build phase, NR×LR

B
× TPCM cycles will be spent in

reading tuples of relation R. Similarly, NS×LS

B
×TPCM cycles will be consumed in reading tuples

of relation S during the probe phase.

For conventional hash join, as each hash entry in the bucket is dynamically allocated and

hence can land on any PCM block, searching for a matching entry in a bucket would involve

fetching a PCM block for each entry. This would incur an overhead of NS × F × TPCM cycles.

Retrieving the matching R tuples – assuming each tuple of relation S joins with a single tuple
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from relation R – would require another NS × dLR

B
e × TPCM cycles. The total cycles consumed

will therefore be

Thj conv = (
NRLR

B
+NS(

LS

B
+ F + dLR

B
e) +

4Whj conv

B
)× TPCM

= (
NR(LR +H + P + 4) +NjLj

B
+NS(

LS

B
+ F + dLR

B
e))× TPCM

(3.9)

In PCM-conscious hash join, since each page is a contiguous block of memory, the cycles

consumed for search inside a hash table bucket will be NS × d H×F
min(Spage,B)

e × TPCM . Moreover,

F
256
× dLR

B
e × TPCM cycles will be incurred for fetching the tuples of relation R including those

due to false positives – owing to the 1-byte limited hash value length. Hence, the overall time

taken would be

Thj = (
NRLR

B
+NS × (

LS

B
+ d H × F

min(Spage, B)
e+

F

256
× dLR

B
e) +

4Whj

B
)× TPCM

= (
NR(LR +H + 1) +NjLj

B
+NS × (

LS

B
+ d H × F

min(Spage, B)
e+

F

256
× dLR

B
e))× TPCM

(3.10)

3.3 The Group-By Operator

We now turn our attention to the group-by operator which typically forms the basis for ag-

gregate function computations in SQL queries. Common methods for implementing group-by

include sorting and hashing – the specific choice of method depends both on the constraints

associated with the operator expression itself, as well as on the downstream operators in the

plan tree. We discuss below the PCM-conscious modifications of both implementations, which

share a common number of output tuple writes, namely Ng × Lg bytes.

3.3.1 Hash-Based Grouping

A hash table entry for group-by, as compared to the corresponding entry in hash join, has an

additional field containing the aggregate value. For each new tuple in the input array, a bucket
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index is obtained after hashing the value of the column present in the group-by expression.

Subsequently, a search is made in the bucket indicated by the index. If a tuple matching the

group-by column value is found, the aggregate field value is updated; else, a new entry is created

in the bucket. Thus, unlike hash join, where each build tuple had its individual entry, here the

grouped tuples share a common entry with an aggregate field that is constantly updated over

the course of the algorithm.

Since the hash table construction for group-by is identical to that of the hash join operator,

the PCM-related modifications described in Section 3.2 can be applied here as well. That is,

we employ a page-based hash table organization, and a reduced hash value size, to reduce the

writes to PCM.

3.3.1.1 PCM write analyses

In hash table based group-by, the number of separate entries in the hash table would be Ng.

Similar to the analysis of writes for conventional hash join in Equation 3.7, creation of these

entries would incur writes of Ng × (H + 4 + P ) bytes. Writes due to updates of the aggregate

field would be NR × A bytes. This would give a total word-writes of:

Wgb ht conv =
Ng × (H + 4 + P ) +NR × A+Ng × Lg

4
(3.11)

From the discussion on modifications for PCM-conscious hash-based group-by, it is easy to

see that the total number of word-writes incurred is given by

Wgb ht =
Ng × (H + 1) +NR × A+Ng × Lg

4
(3.12)

3.3.1.2 Response time analyses

The calculations for response time for hash-based grouping are similar to those for hash-join

in Section 3.2.2. For simplicity of calculation, we assume that the number of distinct values of

the group-by column is small compared to the overall cardinality of the table, and that all of

them appear at the beginning of the table. In that case, the number of entries in each bucket
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is fixed once those initial tuples are read, and subsequent tuples will only update the aggregate

value.

There will be NRLR

B
× TPCM cycles incurred for reading tuples of table R. For probing the

table, another NR × F × TPCM cycles will be consumed. Finally, fetching the actual tuple

corresponding to the entry would incur NR×dLR

B
e cycles. Thus, the overall time consumed will

be

Tgb ht conv = (
NRLR

B
+NR × F +NR × d

LR

B
e) +

4Wgb ht conv

B
)× TPCM

= (NR(
LR + A

B
+ F + dLR

B
e) +

Ng(H + P + Lg + 4)

B
)× TPCM

(3.13)

For PCM-conscious hash-based group-by, the expression for the number of PCM blocks

required for searching for a matching tuple inside a bucket would change to NR×d (H+A)×F
min(Spage,B)

e.

Moreover, there will be some false-positives due to the limited hash value length, due to which

the number of tuples fetched for matching entries would change to NR × F
256
× dLR

B
e, thereby

resulting in the response time expression of

Tgb ht = (
NRLR

B
+NR × d

(H + A)× F
min(Spage, B)

e+NR ×
F

256
× dLR

B
e+

4Wgb hj

B
)× TPCM

= (NR(
LR + A

B
+

F

256
× dLR

B
e+ d (H + A)× F

min(Spage, B)
e) +

Ng(H + Lg + 1)

B
)× TPCM

(3.14)

3.3.2 Sort-Based Grouping

Sorting may be used for group-by when a fully ordered operator such as order by or merge join

appears downstream in the plan tree. Another use case is for queries with a distinct clause in

the aggregate expression, in order to identify the duplicates that have to be discarded from the

aggregate.

Sorting-based group-by differs in a key aspect from sorting itself in that the sorted tuples do

not have to be written out. Instead, it is the aggregated tuples that are finally passed on to the
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next operator in the plan tree. Hence, we can modify the flashsort algorithm of Section 3.1 to

use pointers in both the Permutation and Short-range Ordering phases, subsequently leveraging

these pointers to perform aggregation on the sorted tuples.

3.3.2.1 PCM write analyses

For conventional sort-based grouping, the writes would be akin to those incurred for sorting,

plus an additional writes of Ng×Lg bytes incurred due to writing out the grouped tuples. Thus,

following the same analysis as in Equation 3.1, the total word-writes would be:

Wgb sort conv =
NRLR(0.5dlog2(NRLR

D
)e+ 1) +Ng × Lg

4
(3.15)

Coming to the calculations of writes for flashsort based group-by, the full tuple writes of

2NRLR bytes which were incurred in the flashsort scheme, are now replaced by 2NR × P bytes

since pointers are used during both the Classification and Short-range Ordering phases. Thus,

the total number of word-writes for this algorithm for uniformly distributed data would be

Wgb sort =
2NR × P +Ng × Lg

4
(3.16)

3.3.2.2 Response time analyses

The response time calculation for conventional sort-based group-by is similar to that of sort in

Section 3.1.4, with an additional read of the entire list of tuples – amounting to NRLR

B
PCM

blocks – to compute the aggregates. There will also be a computation time overhead of NR for

the aggregation pass over the sorted tuples. The response time will therefore be

Tgb sort conv =
l∑

i=1

(
NRLR

B
× TPCM) +

NRLR

B
× TPCM +NR +NRlog2NR +

4Wgb sort conv

B
× TPCM

=
NRLR(d1.5log2(NRLR

D
)e+ 2) +NgLg

B
× TPCM +NR(1 + log2NR)

(3.17)
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To compute the response time for flashsort based group-by operator, we divide the response

time into read, computation and write times – similar to the analyses of the sort operator in

Section 3.1.4. During the Classification phase, NRLR

B
blocks will be read from PCM. Afterwards,

during the Permutation phase, NR(LR+P )
B

PCM blocks will be required for reading both tuples

and pointers to those tuples. Finally, another set of NR(LR+P )
B

PCM blocks will be fetched

during the Short-range Ordering phase. Note that there are no additional block reads required

for aggregation, as it will be done for each partition while it is in DRAM during the Short-

range Ordering phase. The computation time requirements of the group-by operator will be

3NR + NRlog2
NR

p
, which is obtained after accounting for the additional time required for the

aggregation pass over sorted data. Hence, the overall time consumed by sort-based group-by

operator will be

Tgb sort =
NR(3LR + 2P )

B
× TPCM + 3NR +NRlog2

NR

p
+

4Wgb sort

B
× TPCM

=
NR(3LR + 4P ) +NgLg

B
× TPCM +NR(3 + log2

D

LR

)

(3.18)
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Implementation Details

This chapter covers the details of our actual physical implementations for the experimental eval-

uation of our proposed optimizations for PCM. We describe the library of operator algorithms

that we created to compare the performance of our implementations with their corresponding

PostgreSQL counterparts. This includes aspects such as programming language, parameter

values and the choice of standard library routines.

Since PCM memory is as yet not available commercially to end-users, we have taken recourse

to a simulated hardware environment to evaluate the impact of the PCM-conscious operators.

For this purpose, we chose Multi2sim [37], an open-source application-only1 simulator. Further,

due to its lack of native support for PCM, we made a major extension to its existing memory

module to model PCM device.

In the next sections, we present a detailed discussion on each of these aspects of our imple-

mentations.

4.1 Operators Library

We wrote both our library as well as the query code in C programming language – the total

implementation involving about 5K lines of code. Since applications written in C generally

execute faster than those written in its object-oriented counterparts such as C++ and Java,

1Simulates only the application layer without the OS stack.
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this ensured that the data-intensive query executions finished in manageable running times

despite orders of magnitude slowdowns introduced by a simulator.

The next sections describe each of our operator implementations in sequence.

4.1.1 Sort

For the native version of sort, we used the PostgreSQL source code, which essentially utilizes

the common quicksort algorithm for sorting data that can fit in main memory. Pivot selection

in this implementation is based on the median-of-3 rule, in which the median element among

three randomly selected elements is chosen as pivot, to increase the probability of balanced

partitioning.

As mentioned in earlier chapters, the fundamental building block of our sorting operator was

the flashsort algorithm. Since no open-source library for flashsort was available, we implemented

a fresh version of the algorithm for our evaluation. Later, we added customizations to this

algorithm to build separate versions for uniform and non-uniform data distributions. Ideally,

this distribution should be identified using the histograms built on the columns of the database.

However, since these statistics are available only within the database system, we separately

supplied this information to our library to invoke the correct version of the algorithm. To

sort the DRAM sized partitions obtained after the classification step of both the versions, the

standard qsort() routine was used.

We now describe the details of the two implementations of the flashsort algorithm.

4.1.1.1 Uniform Data Distribution

This version partitioned the data on the based of ranges. It used two passes – one to determine

the smallest and the largest elements in the input array and the other to count the number

of elements belonging to each partitions. The partition count was chosen to be twice the

ratio of PCM to DRAM size in order to leave space for additional data structures. This was

followed by the in-place permutation and short-range ordering steps, as described in Section 3.1.

Determining the partition of an element during each of these phases was instantaneous since it

required a direct hash of the value of the element.
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4.1.1.2 Non-Uniform Data Distribution

This version used random pivots to partition the input data. To generate the random indices for

pivot selection, we used the rand() function available in the standard C library. This function

was in turn seeded using a constant argument to the srand() function to ensure that the

experimental results were repeatable. The selected pivots were copied to a separate location

in PCM and sorted using the qsort() function. In contrast to the previous implementation,

finding the partition of an element was slightly slower as required a binary search through the

pivots.

4.1.2 Hash Join

The version of hash join used by PostgreSQL is the hybrid hash join algorithm which builds a

hash table for the current batch of join tuples, while simultaneously adding tuples for subsequent

batches to overflow buckets represented as files on disk. A new dynamically allocated memory

space is allotted for each hash table entry and is connected to existing entries in that bucket

using a pointer. Moreover, the load factor used for deciding the bucket count in the hash table is

fixed at a constant value of 10. For our library, we implemented the simple hash join algorithm

while retaining the hash table structure used by the native PostgreSQL implementation, since

the join tuples in our case can fit entirely in PCM.

The PCM-conscious version of hash join differed from the native version in that the hash

table used pages to allocate memory to each bucket. Each such page had contiguous slots that

could accommodate 32 entries, and the same number was used for our load factor. Further, a

4 Byte bitmap was allocated at the head of each page, each bit in the bitmap corresponding to

a particular page-slot. Single-byte hash values were used, and separate space was reserved in

each page to host these values in immediate succession.

For both the implementations, we used a common hash function of SHA-256 to map tuples

to buckets. This was done to ensure fairness in comparison of the two approaches.
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4.1.3 Group-By

The group-by operator in PostgreSQL leverages the implementations of the previous two op-

erators in order to perform the aggregation. Depending on the type of grouping among sort

and hashed, the appropriate primitives – sorting in case of sort-based, and hash table con-

struction and probing in case of hash-based – are invoked. Inside our library also, we reused

most of the code of sort and hash join operator implementations in group-by. Some customiza-

tions were made specific to the group-by operator, for instance, using pointer-based sorting for

PCM-conscious grouping using sort. These specific customizations of the are described next.

4.1.3.1 Sort-based Grouping

Sorting for PCM-conscious group-by was carried out using 4-Byte pointers to the actual tuples,

and these pointers were eventually used to compute the final aggregates. Though these pointers

consumed extra memory space, it was a very small fraction of the space occupied by the actual

tuples. Moreover, once the aggregate computations were over, the PCM memory associated

with both the pointers and the actual sorted tuples was reclaimed immediately.

4.1.3.2 Hash-based Grouping

For hash table construction for group-by, provisions were made in each hash table entry to store

the additional aggregate field. Secondly, in contrast to the hash table probing for a join attribute

requiring search in the entire bucket (since multiple inner relation tuples can have identical join

column values), the search stopped as soon as the matching value of the aggregated column

was found.

4.2 Simulator Enhancements

Adding PCM support to Multi2sim required modifications to several of its components. This

is because the behaviour of PCM is quite unlike all existing components of the memory hierar-

chy. For instance, changes were required to the timing subsystem of the simulator to support

asymmetric read and write latencies. Similarly, implementation of the data-comparison-write

(DCW) [43] scheme required tracking multiple versions of the data for the same memory lo-
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cation. Furthermore, extensions were necessary to the cache replacement policy to support

N-chance [19] replacement. Clearly, all this required a significant programming effort, the

enhancements running into nearly 6K lines of code, besides requiring complex debugging of

simulator crashes.

In the following sections, we describe the low-level details of each of these enhancements.

4.2.1 Hybrid Main Memory

We implemented PCM as another layer of memory between the DRAM and the Hard Disk.

The size of the existing DRAM was reduced to a fraction of the PCM size. Additionally, its

semantics were modified so that it acts as a buffer for PCM blocks, like an additional level of

cache between the L2 cache and the PCM in an inclusive memory hierarchy. The organization

of the DRAM was also altered to a set-associative structure.

These extensions required addition of a fresh module, beside setting up new L2 to DRAM

and DRAM to PCM communication channels, in the Multi2sim memory configuration file.

Changes were also required in the memory subsystem to ensure that the block requests from

the cache to PCM are routed via the DRAM buffer.

4.2.2 New DRAM Replacement Policy

The default policies available in Multi2sim for cache line replacement were restricted to least

recently used (LRU), first in first out (FIFO) and random block replacement. We added the

novel N-chance replacement policy to this pool that is more suited to future PCM-based hard-

ware. This is because this policy gives eviction preference to non-dirty lines over dirty ones,

thereby saving on expensive writes.

To implement this, we maintain an LRU queue of the DRAM blocks that is updated on each

block access. At the time of eviction, we sequentially examine the blocks in the LRU queue

starting from the oldest block, halting either when a clean block is found or when the number

of blocks examined exceeds N. If no clean block is found, we choose the oldest entry itself as

the candidate block for replacement. Since setting N to half the block associativity was found

to give the best results in [19], we used the same value in our implementation.
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4.2.3 Tracking DRAM-PCM Data

Another major feature addition involved duplicating the entire address space of the applications

to keep track of updates. Current architectural simulators just maintain a dirty bit for each

cache line to indicate that a certain memory location corresponding to that line has been written

to. However, this no longer suffices in a PCM setting since the exact modification to each block

are necessary to determine the number of writes for that block.

To achieve this, we create a duplicate of a PCM block as soon as a request for that block

is made by the DRAM. All the updates to that block are recorded in the duplicate while the

original block is left intact. In this way, the contents of duplicate data block reflect the DRAM

contents, while the original data block represents the data residing in PCM. After the block is

evicted from DRAM, the duplicate is removed to avoid wastage of memory.

4.2.4 Data Comparison Write Scheme

This feature leveraged the separate data functionality discussed earlier, to read the original

contents of the PCM memory location corresponding to the evicted DRAM data block, before

writing back the updated contents. Following such an approach [43] is found to give significant

write savings, especially in cases where the updates to the DRAM block are minimal.

Immediately upon eviction of a dirty DRAM block, we compare the evicted DRAM block’s

contents with those of the PCM version by means of the duplicate block mentioned earlier. If

any of the bits of a particular memory word is found to differ, the entire word is written back

to the PCM memory. Otherwise, the DRAM word is simply discarded without incurring any

writes or their associated latency.

4.2.5 Asymmetric Read-Write Latencies

While making the latency measurements of PCM operations, a critical distinction that needs

to be made is whether the operation is a read or a write. Furthermore, in case of a write,

the latency is additionally dependent on the exact number of word modifications taking place.

Hence, the timing simulation also requires the details of the actual data as its input to accurately
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determine the latency incurred in the process.

We modified the timing simulation to feature the extra latency of a PCM write as compared

to a read operation. The number of modified words, as measured by the DCW scheme, were

supplied to it and the latency calculations for each write were done on the basis of this input.

Further, the fact that a PCM read precedes every PCM write was also accounted by inserting

additional delay during each write request.

4.2.6 Wear Distribution

A critical but often overlooked metric in application-level research for PCM write optimization

is wear distribution. Most such studies assume the presence of an underlying architectural wear-

levelling mechanism that is capable of taking care of skewed writes. However, in rare cases is

the overhead of invoking such routines accounted for. Clearly, an application that performs

its write operations in an evenly distributed manner is likely to avoid the inherent latency of

wear-levelling, while an application with skewed writes is expected to incur such a penalty.

Therefore, we ensured that we add wear distribution among the set of metrics on which we

evaluate our algorithms. Our measurement of wear distribution included introducing multiple

counters in the simulator, one corresponding to each 256B block, which were incremented on

each PCM write. Note that, although a finer granularity of measurement (at a byte level) was

also possible, the number of counters required for such a degree of measurement required a

colossal amount of memory for a 4 GB address space.

4.2.7 Intermediate Statistics

For analysing effect of individual operators on the performance of queries, it was necessary to

get intermediate performance numbers during the execution of the queries. This provision was

missing in Multi2sim since it was only restricted to get the final execution statistics. Also,

since the queries themselves execute atop the simulator, it was tricky to get the same query to

communicate with the simulator to get these numbers.

We devised an inter-process communication mechanism using a disk file based approach.

This file could be written by the running program and periodically probed by the simulator.
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When an operator finished its part in the execution of a query, it wrote a command to the simu-

lator in this file to dump the statistics, and this command would be carried out by the simulator

in the next probe cycle. In this manner, we could obtain individual per-operator figures for the

TPC-H benchmark queries that we executed as part of our experimental evaluation.
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Experimental Evaluation

This chapter details our experimental setup along with the results of our evaluation of the

proposed techniques. The initial part outlines our experimental settings in terms of the hard-

ware parameters, the database and query workload, and the performance metrics on which we

evaluate the PCM-conscious operator implementations. Afterwards, our experimental results

on benchmark queries are presented, which is followed by an analysis of the savings due to each

of the operators individually. To simulate the effect of multiple processes running in parallel,

we subsequently measure the effect of reduced DRAM availability on the performance of our

implementations. Finally, we validate the write estimators proposed in Chapter 3 by comparing

the estimated writes with the actual writes incurred during query execution.

5.1 Architectural Platform

We evaluated the algorithms on Multi2sim in cycle-accurate simulation mode. The specific

configurations of the memory hierarchy (L1 Data, L1 Instruction, L2, DRAM Buffer, PCM)

used for evaluation in our experiments are enumerated in Table 5.1. These values are scaled-

down versions, w.r.t. number of lines, of the hardware simulation parameters used in [31] – the

reason for the scaling-down is to ensure that the simulator running times are not impractically

long. However, we have been careful to ensure that the ratios between the capacities of adjacent
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Table 5.1: Experimental Setup

Simulator Multi2sim-4.2 with added support for PCM
L1D cache (private) 32KB, 64B line, 4-way set-associative, 4 cycle latency, write-back,

LRU
L1I cache (private) 32KB, 64B line, 4-way set-associative, 4 cycle latency, write-back,

LRU
L2 cache (private) 256KB, 64B line, 4-way set-associative, 11 cycle latency, write-back,

LRU
DRAM buffer (pri-
vate)

4MB, 256B line, 8-way set-associative, 200 cycle latency, write-
back, N-Chance (N = 4)

Main Memory 2GB PCM, 4KB page, 1024 cycle read latency (per 256B line), 64
cycle write latency (per 4B modified word)

levels in the hierarchy are maintained as per the original configurations in [31].

5.2 Database and Queries

For the data, we used the default 1GB database generated by the TPC-H [2] benchmark. This

size is certainly very small compared to the database sizes typically encountered in modern

applications – however, we again chose this reduced value to ensure viable simulation running

times. Furthermore, the database is significantly larger than the simulated DRAM (4MB),

representative of most real-world scenarios.

For simulating our suite of database operators – sort, hash join and group-by – we created

a separate library consisting of their native PostgreSQL [1] implementations. To this library,

we added the PCM-conscious versions described in the previous sections. Afterwards, for each

of the queries, a custom end-to-end execution code was written, that made function calls into

the above libraries. Further, the code also created and maintained intermediate data structures

that held the inter-operator tuples during execution.

Due to the large overhead of writing complete execution code for each query, we restricted

ourselves to three queries: Query 13 (Q13), Query 16 (Q16) and Query 19 (Q19), that cover

a diverse spectrum of the experimental space. For each of the queries, we first identified the

execution plan recommended by the PostgreSQL query optimizer with the native operators,
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and then forcibly used the same execution plan for their PCM-conscious replacements as well.

This was done in order to maintain fairness in the comparison of the PCM-oblivious and PCM-

conscious algorithms, though it is possible that a better plan is available for the PCM-conscious

configuration – we return to this issue later in Chapter 6. The three SQL queries and execution

plans associated with them are shown next.

5.2.1 Queries

Q13

select c count , count (∗ ) as c u s t d i s t

from ( select c custkey , count ( o orderkey )

from customer l e f t outer join orde r s on

c cus tkey = o custkey and

o comment not l ike ’%pending%accounts%’

group by c cus tkey

) as c o r d e r s ( c custkey , c count )

group by c count

order by c u s t d i s t desc , c count desc ;

Q16

select p brand , p type , p s i z e ,

count ( distinct ps suppkey ) as s u p p l i e r c n t

from partsupp , part

where p partkey = ps partkey

and p brand <> ’ Brand#35 ’

and p type not l ike ’ECONOMY BURNISHED%’

and p s i z e in (14 , 7 , 21 , 24 , 35 , 33 , 2 , 20)

and ps suppkey not in ( select s suppkey

from s u p p l i e r

where s comment l ike ’%Customer%Complaints%’ )

group by p brand , p type , p s i z e

order by s u p p l i e r c n t desc , p brand , p type , p s i z e ;
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Q19

select sum( l e x t e n d e d p r i c e ∗ (1 − l d i s c o u n t ) ) as revenue

from l i n e i t em , part

where

( p partkey = l p a r t k e y and p brand = ’ Brand#23 ’

and p conta ine r in ( ’SM CASE ’ , ’SM BOX’ , ’SM PACK’ , ’SM PKG’ )

and l q u a n t i t y >= 5 and l q u a n t i t y <= 5 + 10

and p s i z e between 1 and 5 and l sh ipmode in ( ’AIR ’ , ’AIR REG’ )

and l s h i p i n s t r u c t = ’DELIVER IN PERSON’ )

or

( p partkey = l p a r t k e y and p brand = ’ Brand#15 ’

and p conta ine r in ( ’MED BAG’ , ’MED BOX’ , ’MED PKG’ , ’MED PACK’ )

and l q u a n t i t y >= 14 and l q u a n t i t y <= 14 + 10

and p s i z e between 1 and 10 and l sh ipmode in ( ’AIR ’ , ’AIR REG’ )

and l s h i p i n s t r u c t = ’DELIVER IN PERSON’ )

or

( p partkey = l p a r t k e y and p brand = ’ Brand#44 ’

and p conta ine r in ( ’LG CASE ’ , ’LG BOX’ , ’LG PACK’ , ’LG PKG’ )

and l q u a n t i t y >= 28 and l q u a n t i t y <= 28 + 10

and p s i z e between 1 and 15 and l sh ipmode in ( ’AIR ’ , ’AIR REG’ )

and l s h i p i n s t r u c t = ’DELIVER IN PERSON’ ) ;

5.2.2 PostgreSQL Query Plan Trees

We obtained the execution plans for the three TPC-H queries using the PostgreSQL version

9.4.2. Our PostgreSQL server was hosted on a SUN Ultra 24 machine with the following

hardware configuration:

Processor: Intel Core 2 Quad-Core 3.0 GHz processor

Cache: 128 KB L1, 12 MB L2

Memory: 8 GB memory

Disk: 750 GB, 7200 RPM

OS: Ubuntu Linux 12.04 (64-bit)
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The corresponding plans are shown in Figures 5.1 – 5.3. The same plans were used in our

code to execute the queries.

Index Scan / Filter

CUSTOMER

Sort

Seq. Scan / Filter

ORDERS

Merge Left-Join

Group Aggregate

Hash Aggregate

Sort

Figure 5.1: Q13 Plan

Seq. Scan / Filter

PARTSUPP

Hash

Seq. Scan / Filter

SUPPLIER

Hash Anti Join

Hash

Seq. Scan / Filter

PART

Hash Join

Group Aggregate

Sort

Figure 5.2: Q16 Plan
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Index Scan / Filter

PART

Hash

Seq. Scan / Filter

LINEITEM

Hash Join

Aggregate

Figure 5.3: Q19 Plan

5.3 Performance Metrics

We measured the following performance metrics for each of the queries:

PCM Writes: The total number of word (4B) updates that are applied to the PCM memory

during the query execution.

CPU Cycles: The total number of CPU cycles required to execute the query.

Wear Distribution: The frequency distribution of writes measured on a per-256B-block basis.

5.4 Experimental Results

Based on the above framework, we conducted a wide variety of experiments and present a

representative set of results here. We begin by profiling the PCM writes and CPU cycles

behavior of the native and PCM-conscious executions for Q13, Q16 and Q19 – these results are

shown in Figures 5.4-5.7. In addition to the standard TPC-H with uniform data distribution,

we also show results for the sort operator implementation on a skewed version of TPC-H,

generated using a Zipfian distribution [10] with a skew factor of Z = 1. In each of these figures,

we provide both the total and the break-ups on a per-operator basis, with GB and HJ labels

denoting group-by and hash join operators, respectively.
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Focusing our attention first on Q13 in Figure 5.4, we find that the bulk of the overall writes

and cycles are consumed by the sort operator. Comparing the performance of the Native (blue

bar) and PCM-conscious (green bar) implementations, we observe a very significant savings

(53%) on writes, and an appreciable decrease (20%) on cycles.

Figure 5.4: Q13 Performance

Figure 5.5: Q13 Performance (skewed TPC-H)

For Q13 execution on skewed TPC-H, for which we used the multi-pivot flashsort algorithm,

the corresponding performance numbers (Figure 5.5) are comparatively lesser. Specifically,

savings of 44% and 14% are observed in writes and cycles, respectively.

Turning our attention to Q16 in Figure 5.6, we find that here it is the group-by operator
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that primarily influences the overall writes performance, whereas the hash join determines the

cycles behavior. Again, there are substantial savings in both writes (40%) and cycles (30%)

delivered by the PCM-conscious approach.

Figure 5.6: Q16 Performance

Figure 5.7: Q19 Performance

Finally, moving on to Q19 in Figure 5.7, where hash join is essentially the only operator,

the savings are around 64% with regard to writes and 32% in cycles.
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5.5 Operator-wise Analysis

We now analyse the savings due to each operator independently and show their correspondence

to the analyses in Sections 3.1–3.3 .

5.5.1 Sort

For Q13 execution on uniform TPC-H, as already mentioned, we observed savings of 53% in

writes and 20% in cycles, since the number of tuples to be sorted was high. Similarly, on skewed

TPC-H, these figures were 44% (writes) and 14% (cycles). In the case of Q16, the data at the

sorting stage was found to be much less than the DRAM size as the number of tuples coming

out of the group-by operator was low. Hence, both the native and PCM-conscious executions

used the standard sort routine, and as a result, the cycles and writes for both implementations

match exactly.

5.5.2 Hash Join

Each entry in the hash table consisted of a pointer to the build tuple and a hash value field. New

memory allocation to each bucket was done in units of pages, with each page holding up to 64

entries. A search for the matching join column began with the first tuple in the corresponding

bucket, and went on till the last tuple in that bucket, simultaneously writing out the join tuples

for successful matches. For Q16, we observed a 12% improvement in writes and 31% in cycles

due to the PCM-conscious hash join, as shown in Figure 5.6. The high savings in cycles was the

result of the caching effect due to page-wise allocation. These improvements were even higher

with Q19 – specifically, 65% writes and 32% cycles, as shown in Figure 5.7. The source of the

enhancement was the 3 bytes of writes saved due to single-byte hash values1, and additionally,

the page-based aggregation of hash table entries.

1The hash values of all entries within a bucket are placed contiguously.
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5.5.3 Group-By

In Q16, the aggregate operator in the group-by has an associated distinct clause. Thus, our

group-by algorithm utilized sort-based grouping to carry out the aggregation. Both the parti-

tioning and sorting were carried out through pointers, thereby reducing the writes significantly.

Consequently, we obtain savings of 74% in writes and 20% in cycles, as shown in Figure 5.6.

When we consider Q13, however, the grouping algorithm employed was hash-based. Here,

the hash table consisted of very few entries which led to the overhead of the page metadata

construction overshadowing the savings obtained in other aspects. Specifically, only marginal

improvements of about 4% and 1% were obtained for writes and cycles, as shown in Figure 5.4.

5.6 Lifetime Analysis

The above experiments have shown that PCM-conscious operators can certainly provide sub-

stantive improvements in both writes and cycles. However, the question still remains as to

whether these improvements have been purchased at the expense of longevity of the memory.

That is, are the writes skewed towards particular memory locations? To answer this, we show in

Figures 5.8 - 5.10, the maximum number of writes across all memory blocks for the three TPC-

H queries (as mentioned earlier, we track writes at the block-level–256 bytes–in our modified

simulator). The x-axis displays the block numbers in decreasing order of writes.

We observe here that the maximum number of writes is considerably more for the native

systems as compared to the PCM-conscious processing. This conclusively demonstrates that

the improvement is with regard to both average-case and worst-case behavior.

5.7 DRAM size sensitivity analysis

We now move on to covering the scenario wherein the available DRAM size at runtime is lesser

than that anticipated prior to the query execution – for example, due to concurrent query

processing. To model this scenario, we experiment with DRAM sizes of 512 KB, 1 MB and

2 MB. Note that, for each of these cases, all the algorithms continue to assume 4 MB as the
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Figure 5.8: Q13 wear distribution

Figure 5.9: Q16 wear distribution
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Figure 5.10: Q19 wear distribution

available DRAM size, oblivious to the actual reduction in the availability of DRAM, and hence

continue to execute accordingly. The results are shown in Figures 5.11, 5.12 and 5.13 for the

Sort, Hash Join and Group By operators, respectively.

In Figure 5.11, we observe that the Sort operator provides average savings for Q13 of about

47% in Writes and 20% in Cycles.

Figure 5.11: Sort (Q13)
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In case of Q16, the hash join operator rendered 17% improvement in writes and 50% in

running time. The hash join in Q19 continued to benefit with savings of about 42% in writes

and again 50% in running time.

(a) Q16

(b) Q19

Figure 5.12: Hash Join

For the group-by operator in Q16, writes savings of 78% and running time savings of 26%

were observed for the group-by operator. The hash table for group-by being much smaller than

all DRAM variants for Q13, the change in the DRAM size didn’t reflect much of a change in

writes and running time - yielding the same average of 4% and 1% for the two metrics respec-

tively. Thus, we can conclude that the savings obtained by our algorithms are not restricted

to the environment where the DRAM is exclusively available to one process. Instead, our al-
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(a) Q13

(b) Q16

Figure 5.13: Group By
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gorithms can handle the unpredictability in the DRAM availability due to multiple running

processes equally well, thereby being sufficiently robust to volatile system behaviour.

5.8 Validating Write Estimators

We now move on to validating the estimators (presented in Sections 3.1 through 3.3) for the

number of writes incurred by the various database operators.

5.8.1 Sort

The size of the orders table is approximately 214 MB. The flashsort algorithm incurred writes

of 110.6M. On the other hand, the writes for multi-pivot flashsort algorithm were 112.1M.

Replacing the values for NRLR with the table size in Equations 3.2 and 3.3, we get the writes

as

Wsort uniform = Wsort non uniform = (214× 106)/2 = 107M

Thus the estimate is close to the number of observed word-writes.

5.8.2 Hash Join

For the hash join in Q19, the values of NR, H, Nj, Lj are 0.2M, 4 bytes, 120 and 8 bytes,

respectively. Substituting the parameter values in Equation 3.8, the writes are given by:

Whj = (0.2× 106 × 5 + 120× 8)/4 ≈ 0.25M

which is close to the actual word-writes of 0.32M.

5.8.3 Group-By

The values of the parameters NR, LR, P , Ng and Lg for Q16 are 119056, 48 bytes, 4 bytes,

18341 and 48 bytes, respectively. The grouping algorithm used was sort-based grouping. Using

Equation 3.16 results in:

Wgb sort = (2× 119056× 4 + 18341× 48)/4 = 0.46M
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This closely corresponds to the observed word-writes of 0.36M.

A summary of the above results is provided in Table 5.2. It is clear that our estimators

predict the write cardinality with an acceptable degree of accuracy for the PCM-conscious

implementations, making them suitable for incorporation in the query optimizer.

Table 5.2: Validation of Write Estimators

Operator Estimated Mega Observed Mega Error Factor
Word-Writes (e) Word-Writes (o) ( e−o

o
)

Sort (uniform) 107 110.6 -0.03
Sort (non-uniform) 107 112.1 -0.05
Hash Join 0.25 0.32 -0.22
Group-By 0.46 0.36 0.27
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Query Optimizer Integration

In the earlier sections, given a user query, the modified operator implementations were used

for the standard plan choice of the PostgreSQL optimizer. That is, while the execution engine

was PCM-conscious, the presence of PCM was completely opaque to the optimizer. However,

given the read-write asymmetry of PCM in terms of both latency and wear factor, it is possible

that alternative plans, capable of providing better performance profiles, may exist in the plan

search space. To discover such plans, the database query optimizer needs to incorporate PCM

awareness in both the operator cost models and the plan enumeration algorithms.

Current query optimizers typically choose plans using a latency-based costing mechanism.

We revise these models to account for the additional latency incurred during PCM writes.

Having formulated the write estimators for each operator (as described in Sections 3.1 to 3.3),

this modification is straightforward. All that it requires is to use those estimators to get an

approximate count of the number of memory operations that are writes, and then multiply

that count with the difference between the write and read latencies to derive the additional

delay. Further, we also introduce a new metric of write cost in the operator cost model that

represents the number of incurred writes for a plan in the PCM environment. Again, the same

write estimators prove useful by approximating this figure apriori. We henceforth refer to the

latency cost and the write cost of a plan as LC and WC, respectively.

A new user-defined parameter, called the latency slack, is incorporated in the query opti-
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mizer. This slack, denoted by λ, represents the maximum relative slowdown, compared to the

LC-optimal query plan, that is acceptable to the user in lieu of getting better write performance.

Specifically, if the LC of the LC-optimal execution plan Po is Co and the LC of an alternate

plan Pi is Ci, the user is willing to accept Pi as the final execution plan if Ci ≤ (1 + λ)Co. The

Pi with the least WC satisfying this equation is considered the WC-optimal plan.

With the new metric in place, we need to revise the plan enumeration process during the

planning phase. This is because the native optimizer propagates only the LC-optimal (and

interesting order) plans through the internal nodes of the dynamic programming (DP) lattice,

which may lead to pruning of potential WC-optimal plans. On the other hand, propagating the

entire list of sub-plans at each internal node can end up in an exponential blow-up of the search

space. In the next sections, we describe two algorithms that can be used to incorporate both

the metrics in the optimizer. These algorithms vary in terms of their ease of implementation

as well as their ability to come up with an optimal plan.

6.1 Heuristic-Propagation Algorithm

As we just discussed, propagation of the full set of sub-plans is an infeasible solution. To

curb the multiplicative effect of plans at each operator node, we instead propose a heuristic-

propagation algorithm that employs an algorithmic parameter, local threshold λl (≥ λ), at each

internal node of the DP tree. Specifically, let pi and po be a generic sub-plan and the LC-

optimal sub-plan at a node, respectively, with ci and co being their corresponding LC values.

Now, along with the LC-optimal and interesting order sub-plans, we also propagate pi with

the least WC that satisfies ci ≤ (1 + λl)co. For the case when the same least WC is shared

between multiple sub-plans, we choose the sub-plan with the lowest LC if their LC values differ.

Otherwise, the propagated sub-plan is an arbitrary selection from these plans. We observed

that setting λl = λ delivered reasonably good results in this regard.

In light of these modifications, let us revisit Query Q13, for which the default plan is shown

in Figure 5.1. With just the revised latency costs (i.e. λ = 0), the optimizer identified a new

execution plan shown in Figure 6.1 wherein the merge left-join between the customer and orders
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Index Scan / Filter

CUSTOMER

Hash

Seq. Scan / Filter

ORDERS

Hash Left-Join

Group Aggregate

Hash Aggregate

Sort

Figure 6.1: Q13 Plan with revised latency costs

tables is replaced by a hash left-join. The relative performance of these two alternatives with

regard to PCM writes and CPU cycles are shown in Figure 6.3(a). We observe here that there is

a huge difference in both the query response times as well as write overheads between the plans.

Specifically, the alternative plan reduces the writes by well over an order of magnitude. As we

gradually increased the latency slack value, initially there was no change in plans. However,

when the slack was made as large as 5, the hash left-join gave way to a nested-loop left-join

(Figure 6.2), clearly indicating that the nested-loop join provides write savings only by incurring

a steep increase in latency cost.

To put matters into perspective, Figure 6.3(b) summarizes the relative performance benefits

obtained as the database layers are gradually made PCM-conscious (in the figure, the labels

Opt and Exec refer to Optimizer and Executor, respectively, while PCM-O and PCM-C refer

to PCM-Oblivious and PCM-Conscious, respectively). For the sake of completeness, we have

also added results for the case when the Optimizer is PCM-C but the Executor is PCM-O (last

column). This is an example to highlight the potential benefits that can be obtained by tuning

the cost models of database operators for PCM environment. The results clearly indicate that
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ORDERS
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Group Aggregate

Hash Aggregate

Sort

Figure 6.2: Q13 Plan with slack (λ) value of 5

future query optimizers for PCM-based architectures need to incorporate PCM-Consciousness

at both the Optimizer and the Executor levels in order to obtain the best query performance.

6.1.1 Experimental Results

We performed our experiments on PostgreSQL 9.2.4 database system, with data generated by

the TPC-H [2] benchmark at a scale factor of 1. We made modifications to the query optimizer

engine to accept different values of the the latency slack (λ) and return the WC-optimal plan

corresponding to that slack. In Table 6.1, we summarize the results obtained by keeping the

latency slack value as 1. Note that the set of base plans considered here is consisting of those

plans that were proposed by the optimizer after accounting for the additional delay due to

writes, i.e. with the revised LC model. We omit the results of those queries for which the

WC-optimal plan was the same as the LC-optimal plan. In the table, the column Time refers

to the time incurred in the optimization process.

As we can see, with a slack of 1, the optimizer gave a different plan for 2 queries – Q15

and Q18. For Q15, savings of 24% in WC were obtained at the cost of doubling the LC of the

plan shown in Figure 6.4. This was obtained by switching hash join to nested-loop join at the
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(a) Performance of Alternative Plans

Metric Opt(PCM-O) Opt(PCM-O) Opt(PCM-C) Opt(PCM-C)
Exec(PCM-O) Exec(PCM-C) Exec(PCM-C) Exec(PCM-O)

Mega Word-Writes 233.6 110.6 4.66 12.8
Giga Cycles 13.1 10.4 3.2 4.5

(b) Overall performance comparison

Figure 6.3: Integration with Query Optimization and Processing Engine

topmost node. On the other hand, for Q18, minuscule savings of 1% in WC were derived by

trading off 48% increase in LC – specifically by replacing the hash join between customer and

(orders ./ lineitem) tables by nested-loop join in Figure 6.5.

From the table, we can see that the time taken for optimization was very low for both the

native optimizer as well as the modified optimizer for slack value of 1. Moreover, owing to the

low times, there was a considerable fluctuation in the numbers for each run. As a result, the

times we have presented in the table are those obtained for one of the sample runs, and are

mainly to serve as a rough estimate for the time taken in the optimization process.

Table 6.1: Comparison of plans generated by Heuristic Algorithm (λ = 1)

Query LC-optimal Plan WC-Optimal Plan
Time(ms) LC(×106) WC(×103) Time(ms) LC(×106) WC(×103)

Q15 12 0.06 2.1 20 0.12 1.6
Q18 15 237 3570 57 352 3525
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Figure 6.4: Q15 Plan
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Figure 6.5: Q18 Plan
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6.2 Greedy Algorithm

In order to identify a possible pattern in the nature of query plans with relatively low value

of WC, we exhaustively enumerated the all plans for queries in the TPC-H benchmark and

of examined their corresponding WC values. In all these experiments, we observed that plans

having a lower WC had their join order identical to that of the LC-optimal plan. Using this

observation for restricting the choice of plans to those having their join order matching the LC-

optimal plan, we map the problem of finding the WC-optimal plan to the well known variation

of the Knapsack Problem called the Linear Multiple Choice Knapsack Problem (LMCKP) [30].

Each item in LMCKP has a weight and a profit associated with it, and these items are

divided into disjoint sets. The objective is to pick up one item from each set in such a manner

that the total weight of the items is within the maximum weight allowed in the knapsack, while

maximising the total profit obtained. Formally stated, the LMCKP problem is as follows:

Given multiple sets N1, N2, ..., Nk of items, they are to be packed in a knapsack of capacity

c. For each item j ∈ Ni , there is an associated profit pij and a weight wij. The objective is to

choose a total of one item from each class so as to maximize the profit sum of the set of items,

while having their weight sum to be within c. The Linear Multiple Choice Knapsack Problem

(LMCKP) is thus formulated as:

maximize z =
k∑

i=1

∑
j∈Ni

pijxij

subject to
k∑

i=1

∑
j∈Ni

wijxij ≤ c,

∑
j∈Ni

xij = 1, i = 1, ..., k

0 ≤ xij ≤ 1, i = 1, ..., k, j ∈ Ni

All coefficients pij, wij, and c are positive integers, and the classes N1,...Nk are mutually

disjoint, class Ni having size ni. xij represents the fraction of each item that is picked from the

set. The total number of items is n =
k∑

i=1

ni.
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In our case, the sets Ni correspond to the logical operators (such as join, sort) in the plan

tree of a query, with the items in a set mapping to the physical algorithms (such as hash join,

merge join) for an operator. The weight wij of an item can be equated to the LC associated

with an algorithm. The profit pij can similarly be mapped to a Normalized Write Cost (NWC),

obtained by subtracting the WC value for each operator algorithm from a common large positive

constant. The coefficient xij associated with each item j ∈ Ni is similar to deciding whether a

particular physical algorithm for executing an operator is utilized or not. Thus, given an LC

limit (1 + λ)Co (corresponding to knapsack capacity c), LMCKP is equivalent to the problem

of minimizing WC (by maximising NWC) while having the total sum of each operator’s LC to

be within the LC limit.

A critical point to note here is that there is no restriction on xij to have a binary 0 or 1

value. Therefore, one might think that all these variables can assume fractional values in the

final solution. Since this corresponds to the weights of the algorithms at each operator node,

it would seem to imply that the final plan could possibly have multiple algorithms executing

a fraction of each operator. However, as proved in [30], the optimal solution to this problem

can have at the most two of these variables taking a fractional value. Furthermore, both these

variables will always belong to the same set Nf . For the rest of these variables, their value will

either be 0 or 1. Since, according to the problem definition, the summation of these variables

in each set should be exactly 1, the rest of the sets Ni, i 6= f will have only one non-zero xij,

the value of that variable being 1. In database terms this means that, in the WC-optimal plan,

at the most one of the operators can have two algorithms performing a partial execution of the

query. We return to this aspect in our final algorithm.

The LMCKP problem can be solved using a greedy algorithm [30] that provides an optimal

solution in polynomial time complexity. We leverage the same greedy approach to solving the

dual-objective optimization problem of query plan selection. Our algorithm uses two passes –

the first pass closely resembling the conventional DP optimization process, while the second

pass using the information gathered in the first to come up with the WC-optimal plan. Both

these passes are described next.
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First Pass

In the first pass, we keep track of the LC-optimal and an additional least WC plan (similar in

the way of tracking interesting order plans) at each node, using the bottom-up DP algorithm.

If they both are the same, we skip the second pass and output that plan as the solution.

Otherwise, the LC-optimal cost Co is used as an input to the second pass.

Second Pass

The second pass uses the Co obtained in the first pass to derive the LC bound of (1 + λ)Co.

Next, the NWC values are derived for each algorithm to map the query-optimization problem

to LMCKP. Afterwards, it prunes the search space of operator algorithms by using the LP-

domination principle. That is, for three algorithms r, s and t belonging to the same operator

Ni, discard s if any of the following two conditions hold:

a) LCir ≤ LCis and NWCir ≥ NWCis.

b)

∣∣∣∣∣∣LCis − LCir NWCis −NWCir

LCit − LCir NWCit −NWCir

∣∣∣∣∣∣ ≤ 0.

Condition a) is equivalent to removing operator algorithm s if it is worse than r on both

metrics – cycles and writes, such as P4 dominating P3 in Figure 6.6. Condition b), on the other

hand, dictates that we discard an operator algorithm if a hybrid algorithm, that employs a

weighted combination of two other algorithm, can give a better performance. For instance, in

Figure 6.6, we can achieve any (LC, NWC) combination located on the line connecting P1 and

P4 using a linear combination of P1 and P4 . Hence, the point P2 can be discarded.

Overall, referring to the same figure, all the operator algorithms denoted by blue would

be retained while those in red would be discarded. These new sets consisting of undominated

operator algorithms for each operator in the plan tree are denoted by Ri, i = 1, ..., k. These

are provided as an input to the greedy algorithm, the pseudo-code of which is outlined in

Algorithm 4.
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Algorithm 4 Greedy Algorithm for WC-Optimal Plan Selection

Co is obtained from the first pass
Ri consists of LP-undominated operator algorithms λ is the slack value

1: c = (1 + λ)Co

2: Sort the operator algorithms in increasing order of LC for all Ri, i = 1, ..., k
3: Choose the least LC algorithm from each Ri (i.e. xi1 = 1, xij = 0) for j = 2, ..., |Ni|, i =

1, ..., k). Define LCsum and NWCsum as:

LCsum =
k∑

i=1

LCi1 and

NWCsum =
k∑

i=1

NWCi1, respectively.

4: For all algorithms j 6= 1, we define the slope σij as

σij =
NWCij −NWCi,j−1

LCij − LCi,j−1
5: Sort the slopes σij in non-increasing order.
6: while LCsum + LCij − LCi,j−1 ≤ c do
7: Let i, j be the indices corresponding to the next slope σij in {σij} .
8: xij = 1, xi,j−1 = 0
9: LCsum = LCsum + LCij − LCi,j−1

10: NWCsum = NWCsum +NWCij −NWCi,j−1.
11: end while
12: if LCsum = c then
13: return
14: else
15: Let σij be the next slope in the list.

/* The optimal solution has two fractional variables */

16: xij =
c− LCsum

LCij − LCi,j−1
17: xi,j−1 = 1− xij
18: end if
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Figure 6.6: LP-undominated algorithms (blue)

As mentioned earlier, there exists a possibility that, for exactly one of the operators, the

optimal solution contains a weighted combination of two algorithms. In that case, we perform

a partial execution of that operator using the two algorithms; the extent of each of those

executions being governed by their respective weights in the optimal solution. For instance,

in case of join nodes, we can divide the inner relation into two portions, the ratio of which

corresponds to the ratio of the weights obtained from the greedy algorithm. The outer relation

is joined with one portion of the inner relation using the first algorithm, and with the other

portion using the second algorithm.

6.3 Illustrative example comparing the algorithms

Let there be a query which has a single join order possible, with a plan tree structure corre-

sponding to that shown in Figure 6.7.
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Seq. Scan / Filter
(LC = 0, WC = 0)

ORDERS

Seq. Scan / Filter
(LC = 0, WC = 0)

LINEITEM

Join Node A
Seq. Scan / Filter
(LC = 0, WC = 0)

NATION

Join Node B

Figure 6.7: Query Plan Tree Structure

Let the algorithms available at join node A be the following:

Hash Join (AHJ): LC = 100, WC = 300

Merge Join (AMJ): LC = 150, WC = 200

Nested-loop Join (ANLJ): LC = 200, WC = 150

Similarly, for a simpler analysis, let the algorithms available at join node B be restricted to

the following:

Hash Join (BHJ): LC = 100, WC = 200

Nested-loop Join (BNLJ): LC = 250, WC = 100

Under these conditions, the search space of the current optimizer will consist of six (2 ×

3) plans. On calculating the overall costs of each of these plans, we get the following numbers

(the information in brackets indicating the combination of execution algorithms):

Plan P1 (AHJ , BHJ): LC = 200, WC = 500

Plan P2 (AMJ , BHJ): LC = 250, WC = 400

Plan P3 (ANLJ , BHJ): LC = 300, WC = 350

Plan P4 (AHJ , BNLJ): LC = 350, WC = 400

Plan P5 (AMJ , BNLJ): LC = 400, WC = 300

Plan P6 (ANLJ , BNLJ): LC = 450, WC = 250
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Figure 6.8: LC-optimal plan (P1)

The LC-optimal plan for this query having the least LC value of 200 is shown in Figure 6.8.

Setting Co = 200 and assuming λ = 1, we are now interested in finding the minimum writes

plan having LC bounded by (1 + λ)Co = 400. In the next sections, we discuss the final plans

returned by the different algorithms.

An enumeration plan selection algorithm, i.e. the one that sequentially tries out each

algorithm for every operator node, will return P5 (displayed in Figure 6.9) having WC value of

300 as the final plan. Note that although plan P6 has the lowest WC value of 250, it doesn’t

qualify as a candidate plan by virtue of having LC of 450, which is greater than the bound of

400.

6.3.1 Heuristic-Propagation Algorithm

Let λl = λ = 1. The local LC-optimal sub-plan cost at join node A is co = 100. Although both

AMJ and ANLJ qualify at this node for having LC within (1 + λl)co = 200, the local pruning

at each node dictates that we propagate just ANLJ since it has the minimum WC. Thus, plans

P2 and P5 comprising of AMJ are automatically pruned from the set of candidates.

Coming to the root node – join node B – we find that among the plans P3, P4 and P6, plan
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Figure 6.9: Enumeration Algorithm plan (P5)
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Figure 6.10: Heuristic-Propagation Algorithm plan (P3)

P3 having WC = 350 qualifies to be the least WC plan; plan P6 being discarded for reasons

described earlier. This plan is shown in Figure 6.10 .

6.3.2 Greedy Algorithm

In this case, we order the available operator algorithms at each plan node in increasing order

of their LC. We take the value of 300 (corresponding to the highest WC among all operator

algorithms) as the common large positive constant described in Section 6.2, and subtract the

writes of all operator algorithms from it to obtain their corresponding NWC values. Thus the
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final pair of values for each of these algorithms are as follows:

Join Node A:

Hash Join (AHJ): LC = 100, NWC = 0

Merge Join (AMJ): LC = 150, NWC = 100

Nested-loop Join (ANLJ): LC = 200, NWC = 150

Join node B:

Hash Join (BHJ): LC = 100, NWC = 100

Nested-loop Join (BNLJ): LC = 250, NWC = 200

For all operator algorithms corresponding to both A and B join nodes, none of the conditions

of LP-domination (as discussed in Section 6.2) holds, as can be seen from Figure 6.11. The LP-

undominated sets Ri are therefore the same as the original sets Ni. Consequently, the sequence

of operator algorithms at each of these nodes ordered by their non-decreasing LC is:

Join Node A: AHJ , AMJ , ANLJ

Join Node B: BHJ , BNLJ

On starting with choosing the least LC algorithm at both nodes, i.e. AHJ at A and BHJ at

B, we get LCsum and NWCsum values as:

LCsum = LC(AHJ) + LC(BHJ) = 100 + 100 = 200

NWCsum = NWC(AHJ) +NWC(BHJ) = 0 + 100 = 100

Further, the σ values for the operator algorithms available at both these nodes, calculated

using step 4 of Algorithm 4, are:

σ12 =
NWC(AMJ)−NWC(AHJ)

LC(AMJ)− LC(AHJ)
=

100− 0

150− 100
= 2

σ13 =
NWC(ANLJ)−NWC(AMJ)

LC(ANLJ)− LC(AMJ)
=

150− 100

200− 150
= 1
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(a) Join Node A

(b) Join Node B

Figure 6.11: Plot of algorithm costs
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σ22 =
NWC(BNLJ)−NWC(BHJ)

LC(BNLJ)− LC(BHJ)
=

200− 100

250− 100
= 0.67

The non-increasing order of slopes is therefore {σ12, σ13, σ22}.

Since the LCsum is less than the allowable limit of 400, we replace the algorithm correspond-

ing to the first σ value. Starting with σ12 and replacing the values of AHJ with AMJ in both

LCsum and NWCsum we get:

LCsum = LCsum − LC(AHJ) + LC(AMJ) = 200− 100 + 150 = 250

NWCsum = NWCsum −NWC(AHJ) +NWC(AMJ) = 100− 0 + 100 = 200

The above step of operator algorithm replacement at the node that corresponds to the

successive σ value in the sequence is repeated until LCsum equals 400 or the next replacement

exceeds it. We find that this condition happens at σ13 when the subsequent replacement of

BHJ with BNLJ would have exceeded 400, as shown in the following:

Before replacement:

LCsum = LC(ANLJ) + LC(BHJ) = 200 + 100 = 300

After replacement:

LCsum = LCsum − LC(BHJ) + LC(BNLJ) = 300− 100 + 250 = 450

Thus, according to Algorithm 4, the optimal plan consists of a weighted combination of

BHJ and BNLJ algorithms at join node B. The respective weights are:

wBNLJ
=

c− LCsum

LC(BHJ)− LC(BNLJ)
=

400− 300

250− 100
= 2/3

wBHJ
= 1− wBNLJ

= 1/3
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Hence, the overall optimal plan has the following values of the costs:

LC = LC(ANLJ) +
1

3
× LC(BHJ) +

2

3
× LC(BNLJ) = 200 +

100 + 2× 250

3
= 400

WC = WC(ANLJ) +
1

3
×WC(BHJ) +

2

3
×WC(BNLJ) = 150 +

200 + 2× 100

3
= 283.3

Clearly, the WC of this plan (displayed in Figure 6.12) is the best among all the plans

returned by the plan selection algorithms discussed so far. Therefore, the greedy algorithm has

the potential to find out a plan – by exploring all possible weighted combinations of execution

algorithms at each operator node – that can be far superior to the plans in the limited search

space of either the enumeration algorithm or the heuristic-propagation algorithm. Moreover,

this exploration is conducted in an efficient manner, finishing in a time that is polynomial in

the total number of available operator algorithms.

Seq. Scan / Filter
(LC = 0, WC = 0)

ORDERS

Seq. Scan / Filter
(LC = 0, WC = 0)

LINEITEM

Nested-loop Join
(LC = 200, WC = 150)

Seq. Scan / Filter
(LC = 0, WC = 0)

NATION

1
3

Hash Join / 2
3

Nested-loop Join
(LC = 200, WC = 133.3)

Figure 6.12: Greedy Algorithm Plan

Notwithstanding its advantages, the greedy algorithm comes with some major limitations

that make its adoption at the current state infeasible.

First, the algorithm works with the assumption that the join order of the WC-optimal plan
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is same as that of the LC-optimal plan, which may not always hold true. Handling multiple

join orders would require us to run a copy of the greedy algorithm for each possible join order.

However, this can be expensive for queries containing a large number of join relations, due to

an exponential number of such orders.

Second, it assumes that the costs associated with each operator algorithm is fixed and is

independent of choices at other nodes. This assumption doesn’t hold in case of interesting

orders, for in such cases, choosing an operator algorithm that outputs the tuples in some

interesting order at one particular node might serve to reduce the cost of another operator

algorithm at a later node.

Third, the implementation of the greedy plan selection algorithm requires a considerable

redesign to a database optimizer which uses a DP-based approach for selecting a plan, such

as PostgreSQL. Additionally, changes are also required to the executor to support weighted

execution of multiple operator algorithms for a given operator node in a query plan tree.

In essence, the greedy approach serves to provide a framework that lays the foundation for

building future PCM and other similar NVM-based multi-objective query optimizers.
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Conclusion

Designing database query execution algorithms for PCM platforms requires a change in per-

spective from the traditional assumptions of symmetric read and write overheads. It now opens

up a new area of execution algorithm design wherein the algorithm needs to be cognizant about,

not just the number of memory operations, but the kinds of operations as well. Prior techniques

such as cache-conscious processing have the potential to find renewed applications in this area.

At the same time, custom asymmetric I/O design decisions – such as trading writes for reads

– can go a long way in determining not just the performance profiles of database engines, but

also the lifetime of the underlying PCM hardware.

We presented here a variety of minimally modified algorithms for the workhorse database

operators: sort, hash join and group-by, which were constructed with a view towards simultane-

ously reducing both the number of writes and the response time. Through these algorithms, our

aim was to facilitate a quick an easy transition of database engines to a PCM-based hardware.

Further, each of these algorithms was accompanied by the corresponding write estimator that

was shown to predict writes with a reasonable degree of accuracy.

Using a state-of-the-art simulator after addition of PCM support, we performed detailed ex-

perimentation on complete TPC-H benchmark queries; something that has not been undertaken

in any prior literature in this area. We showed that substantial improvements on these metrics

can be obtained as compared to their contemporary PCM-oblivious counterparts. Collaterally,
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the PCM cell lifetimes are also greatly extended by the new approaches.

Furthermore, we introduced a novel metric of write cost that plays a critical role in the

choice of algorithms on PCM hardware. We presented two algorithms to integrate this metric

in the query optimizer – one heuristic and another based on greedy solution to the linear

multiple choice knapsack problem. The heuristic technique is easy to implement but suffers

from a high probability of providing grossly sub-optimal query plans. The greedy algorithm

based approach, on the other hand, provides an optimal plan but only within the search space

of the join order corresponding the latency cost optimal plan. Moreover, it is also incapable of

handling interesting orders, besides warranting considerable changes to the database engine.

In this manner, we incorporated PCM-consciousness in all layers of the database engine.

We also presented initial results showing how this can influence plan choices, and improve the

write performance by a substantial margin. While our experiments were conducted on a PCM

simulator, the cycle-accurate nature of the simulator makes it likely that similar performance

will be exhibited in the real world as well.

For our future work, we would like to accomplish the following:

1. Improve our write estimators to additionally predict the wear distribution of algorithms.

The current estimators are restricted to providing a count of the total number of writes

for each operator execution algorithm. However, it might be preferable to choose an

algorithm that incurs a higher number of writes in a uniformly distributed manner, over

the one that leads to a lower number of writes but with a skewness in their distribution.

The improved estimators would thus enable the optimizers to make these decisions in an

informed manner.

2. Extend the greedy plan selection algorithm presented in Section 6.2 to cover all possible

plans in the search space. This requires handling plans for two scenarios – diverse join

orders as well as interesting order. Using this, we hope to provide provable performance

guarantees for the WC-optimal plan returned by the optimizer for any type of query.

3. Implement this plan selection algorithm in the PostgreSQL optimizer and experimentally
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compare its performance with the native version, in order to obtain actual improvement

numbers.

4. Design improved PCM-conscious query execution algorithms suitable for multi-query

workloads. Parallel queries, especially with large memory footprints, can exacerbate the

problem of limited DRAM availability, by mutual eviction of intermediate data. Such a

scenario offers new challenges for ensuring minimal writes despite these evictions.

5. Explore the possibility of dividing the write traffic to frequently written data structures

to separate memory locations. This can be particularly useful in cases such as aggregate

functions which keep updating a limited set of aggregate variables. In such cases, these

aggregate variables can be divided into multiple sub-aggregates, which can be eventually

combined to provide the overall result.

6. Investigate other areas of PCM-conscious database design, such as ensuring ACID seman-

tics during query execution on PCM, and leveraging the non-volatility of PCM to reduce

logging requirements.

Overall, the results of this work augur well for an easy migration of current database engines

to leverage the benefits of tomorrow’s PCM-based computing platforms.
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